首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever—a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit—a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.  相似文献   

2.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

3.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

4.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

5.
The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15–35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ α-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.  相似文献   

6.
Membrane fusion is an essential step of the internalization process of the enveloped animal viruses. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. In a previous work, we identified a specific sequence in VSV G protein, comprising the residues 145 to 164, directly involved in membrane interaction and fusion. Unlike fusion peptides from other viruses, this sequence is very hydrophilic, containing six charged residues, but it was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Using a carboxyl-modifying agent, dicyclohexylcarbodiimide (DCCD), and several synthetic mutant peptides, we demonstrated that the negative charges of peptide acidic residues, especially Asp153 and Glu158, participate in the formation of a hydrophobic domain at pH 6.0, which is necessary to the peptide-induced membrane fusion. The formation of the hydrophobic region and the membrane fusion itself were dependent on peptide concentration in a higher than linear fashion, suggesting the involvement of peptide oligomerization. His148 was also necessary to hydrophobicity and fusion, suggesting that peptide oligomerization occurs through intermolecular electrostatic interactions between the positively-charged His and a negatively-charged acidic residue of two peptide molecules. Oligomerization of hydrophilic peptides creates a hydrophobic region that is essential for the interaction with the membrane that results in fusion.  相似文献   

7.
Virus membrane fusion   总被引:3,自引:0,他引:3  
Weissenhorn W  Hinz A  Gaudin Y 《FEBS letters》2007,581(11):2150-2155
Membrane fusion of enveloped viruses with cellular membranes is mediated by viral glycoproteins (GP). Interaction of GP with cellular receptors alone or coupled to exposure to the acidic environment of endosomes induces extensive conformational changes in the fusion protein which pull two membranes into close enough proximity to trigger bilayer fusion. The refolding process provides the energy for fusion and repositions both membrane anchors, the transmembrane and the fusion peptide regions, at the same end of an elongated hairpin structure in all fusion protein structures known to date. The fusion process follows several lipidic intermediate states, which are generated by the refolding process. Although the major principles of viral fusion are understood, the structures of fusion protein intermediates and their mode of lipid bilayer interaction, the structures and functions of the membrane anchors and the number of fusion proteins required for fusion, necessitate further investigations.  相似文献   

8.
Ⅰ型膜融合蛋白(class I membrane fusion protein)在Ⅰ型包膜病毒入侵宿主细胞过程中发挥重要作用。基于抑制六螺旋结构形成的多肽类融合抑制剂设计的原理是模拟该蛋白融合区域的自身序列,与病毒融合蛋白结合形成异源六聚体,从而阻断病毒与靶细胞膜的融合。此类融合抑制剂的传统设计主要基于一级与二级结构,但为进一步强化其抗病毒活性,通常需依赖病毒膜融合蛋白三级结构信息,从而限制了对那些尚无病毒蛋白三级结构信息的新发病毒的多肽类融合抑制剂的快速优化和研发。本研究提出了不依赖蛋白三级结构信息,而利用I-Mutant2.0软件来辅助设计和优化多肽类病毒膜融合抑制剂的设想。根据I-Mutant2.0的预测结果,以中东呼吸综合征冠状病毒(Middle East respiratory syndrome coronavirus,MERS-CoV)为模型,分析该病毒HR2区融合抑制剂序列中若干适合与不适合优化的位点,并设计了一系列多肽。结果发现,对适合优化的位点进行调整的多肽,其对HR1的结合能力及对病毒的抑制活性均有所提升;反之,多肽活性明显下降。结果表明,利用I-Mutant2.0辅助设计与优化病毒融合抑制多肽的方法具有一定的可行性,为进一步开发新的融合抑制剂设计方法奠定了基础。  相似文献   

9.
Fusion of the viral and host cell membranes is a necessary first step for infection by enveloped viruses and is mediated by the envelope glycoprotein. The transmembrane subunits from the structurally defined “class I” glycoproteins adopt an α-helical “trimer-of-hairpins” conformation during the fusion pathway. Here, we present our studies on the envelope glycoprotein transmembrane subunit, GP2, of the CAS virus (CASV). CASV was recently identified from annulated tree boas (Corallus annulatus) with inclusion body disease and is implicated in the disease etiology. We have generated and characterized two protein constructs consisting of the predicted CASV GP2 core domain. The crystal structure of the CASV GP2 post-fusion conformation indicates a trimeric α-helical bundle that is highly similar to those of Ebola virus and Marburg virus GP2 despite CASV genome homology to arenaviruses. Denaturation studies demonstrate that the stability of CASV GP2 is pH dependent with higher stability at lower pH; we propose that this behavior is due to a network of interactions among acidic residues that would destabilize the α-helical bundle under conditions where the side chains are deprotonated. The pH-dependent stability of the post-fusion structure has been observed in Ebola virus and Marburg virus GP2, as well as other viruses that enter via the endosome. Infection experiments with CASV and the related Golden Gate virus support a mechanism of entry that requires endosomal acidification. Our results suggest that, despite being primarily arenavirus like, the transmembrane subunit of CASV is extremely similar to the filoviruses.  相似文献   

10.
The fusion of enveloped viruses to target membranes is promoted by certain viral fusion proteins. However, many other proteins and peptides stabilize bilayer membranes and inhibit membrane fusion. We have evaluated some characteristics of the interaction of peptides that are models of segments of measles and influenza fusion proteins with membranes. Our results indicate that these models of the fusogenic domains of viral fusion proteins promote conversion of model membrane bilayers to nonbilayer phases. This is opposite to the effects of peptides and proteins that inhibit viral fusion. A peptide model for the fusion segment of the HA protein of influenza increased membrane leakage as well as promoted the formation of nonbilayer phases upon acidification from pH 7-5. We analyze the gross conformational features of the peptides, and speculate on how these conformational features relate to the structures of the intact proteins and to their role in promoting membrane fusion.  相似文献   

11.
Peptides derived from heptad repeat (HR) sequences of viral fusion proteins from several enveloped viruses have been shown to inhibit virus-mediated membrane fusion but the mechanism remains unknown. To further investigate this, the inhibition mechanism of two HR-derived peptides from the fusion protein of the paramyxovirus Newcastle disease virus (NDV) was investigated. Peptide N24 (residues 145-168) derived from HR1 was found to be 145-fold more inhibitory in a syncytium assay than peptide C24 (residues 474-496), derived from HR2. Both peptides failed to block lipid-mixing between R18-labeled virus and cells. None of the peptides interfered with the binding of hemagglutinin-neuraminidase (HN) protein to the target cells, as demonstrated by hemagglutining assays. When both peptides were mixed at equimolar concentrations, their inhibitory effect was abolished. In addition, both peptides induced the aggregation of negatively charged and zwitterionic phospholipid membranes. The ability of the peptides to interact with each other in solution suggests that these peptides may bind to the opposite HR region on the protein whereas their ability to interact with membranes as well as their failure to block lipid transfer suggest a second binding site. Taken together these results, suggest a mode of action for C24 and N24 in which both peptides have two different targets on the F protein: the opposite HR sequence and their corresponding domains.  相似文献   

12.
Infection by enveloped viruses requires fusion between the viral and cellular membranes, a process mediated by specific viral envelope glycoproteins. Information from studies with whole viruses, as well as protein dissection, has suggested that the fusion glycoprotein (F) from Paramyxoviridae, a family that includes major human pathogens, has two hydrophobic segments, termed fusion peptides. These peptides are directly responsible for the membrane fusion event. The recently determined three-dimensional structure of the pre-fusion conformation of the F protein supported these predictions and enabled the formulation of: (1) a detailed model for the initial interaction between F and the target membrane, (2) a new model for Paramyxovirus-induced membrane fusion that can be extended to other viral families, and (3) a novel strategy for developing better inhibitors of paramyxovirus infection.  相似文献   

13.
14.
Cellular entry of lymphocytic choriomeningitis virus   总被引:1,自引:1,他引:0  
Rojek JM  Perez M  Kunz S 《Journal of virology》2008,82(3):1505-1517
In contrast to most enveloped viruses that enter the host cell via clathrin-dependent endocytosis, the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) enters cells via noncoated vesicles that deliver the virus to endosomes, where pH-dependent membrane fusion occurs. Here, we investigated the initial steps of LCMV infection. We found that the attachment of LCMV to its cellular receptor α-dystroglycan occurs rapidly and is not dependent on membrane cholesterol. However, subsequent virus internalization is sensitive to cholesterol depletion, indicating the involvement of a cholesterol-dependent pathway. We provide evidence that LCMV entry involves an endocytotic pathway that is independent of clathrin and caveolin and that does not require the GTPase dynamin. In addition, neither the structural integrity nor the dynamics of the actin cytoskeleton are required for infection. These findings indicate that the prototypic Old World arenavirus LCMV uses a mechanism of entry that is different from clathrin-mediated endocytosis, which is used by the New World arenavirus Junin virus, and pathways used by other enveloped viruses.  相似文献   

15.
The Old World arenavirus Lassa virus (LASV) is the causative agent of severe viral hemorrhagic fever (VHF) in humans and is the most prevalent human pathogen among arenaviruses. The present study investigated the largely unknown mechanisms of cell entry of LASV, a process know to be mediated solely by the virus envelope glycoprotein (GP). To circumvent biosafety restrictions associated with the use of live LASV, we used reverse genetics to generate a recombinant variant of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV GP (rLCMV-LASVGP). The rescued rLCMV-LASVGP grew to titers comparable to that of LCMV and showed the receptor binding characteristics of LASV. We used rLCMV-LASVGP to characterize the cellular mechanisms of LASV entry in the context of a productive arenavirus infection. The kinetics of pH-dependent membrane fusion of rLCMV-LASVGP resembled those of the human-pathogenic New World arenavirus Junin virus (JUNV) and other enveloped viruses that use clathrin-mediated endocytosis for entry. However, rLCMV-LASVGP entered cells predominantly via a clathrin-, caveolin-, and dynamin-independent endocytotic pathway similar to the one recently described for LCMV. Productive infection of rLCMV-LASVGP was only mildly affected by a dominant negative mutant of Rab5 and was independent of Rab7, suggesting an unusual mechanism of delivery to endosomes. In addition, rLCMV-LASVGP infection was independent of actin but required intact microtubules. Our data indicate that LASV enters cells via a pathway distinct from the one used by human-pathogenic New World arenaviruses.  相似文献   

16.
Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection.  相似文献   

17.
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.  相似文献   

18.
Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2, we examined the effects of peptides corresponding to the coiled-coil motif of GP2 on the infectivity of a mutant vesicular stomatitis virus (lacking the receptor-binding/fusion protein) pseudotyped with the Ebola virus GP. A peptide corresponding to the C-terminal helix reduced the infectivity of the pseudotyped virus. We next introduced alanine substitutions into hydrophobic residues in the coiled-coil motif to identify residues important for GP function. None of the substitutions affected GP oligomerization, but some mutations, two in the N-terminal helix and all in the C-terminal helix, reduced the ability of GP to confer infectivity to the mutant vesicular stomatitis virus without affecting the transport of GP to the cell surface, its incorporation into virions, and the production of virus particles. These results indicate that the coiled-coil motif of GP2 plays an important role in facilitating the entry of Ebola virus into host cells and that peptides corresponding to this region could act as efficient antiviral agents.  相似文献   

19.
Viral hemorrhagic fevers caused by the arenaviruses Lassa virus in Africa and Machupo, Guanarito, Junin, and Sabia virus in South America are among the most devastating emerging human diseases with fatality rates of 15-35% and a limited antiviral therapeutic repertoire available. Here we used high throughput screening of synthetic combinatorial small molecule libraries to identify inhibitors of arenavirus infection using pseudotyped virion particles bearing the glycoproteins (GPs) of highly pathogenic arenaviruses. Our screening efforts resulted in the discovery of a series of novel small molecule inhibitors of viral entry that are highly active against both Old World and New World hemorrhagic arenaviruses. We observed potent inhibition of infection of human and primate cells with live hemorrhagic arenaviruses (IC(50)=500-800 nm). Investigations of the mechanism of action revealed that the candidate compounds efficiently block pH-dependent fusion by the arenavirus GPs (IC(50) of 200-350 nm). Although our lead compounds were potent against phylogenetically distant arenaviruses, they did not show activity against other enveloped viruses with class I viral fusion proteins, indicating specificity for arenavirus GP-mediated membrane fusion.  相似文献   

20.
Ebola viruses contain a single glycoprotein (GP) spike, which functions as a receptor binding and membrane fusion protein. It contains a highly conserved hydrophobic region (amino acids 524 to 539) located 24 amino acids downstream of the N terminus of the Ebola virus GP2 subunit. Comparison of this region with the structural features of the transmembrane subunit of avian retroviral GPs suggests that the conserved Ebola virus hydrophobic region may, in fact, serve as the fusion peptide. To test this hypothesis directly, we introduced conservative (alanine) and nonconservative (arginine) amino acid substitutions at eight positions in this region of the GP2 molecule. The effects of these mutations were deduced from the ability of the Ebola virus GP to complement the infectivity of a vesicular stomatitis virus (VSV) lacking the receptor-binding G protein. Some mutations, such as Ile-to-Arg substitutions at positions 532 (I532R), F535R, G536A, and P537R, almost completely abolished the ability of the GP to support VSV infectivity without affecting the transport of GP to the cell surface and its incorporation into virions or the production of virus particles. Other mutations, such as G528R, L529A, L529R, I532A, and F535A, reduced the infectivity of the VSV-Ebola virus pseudotypes by at least one-half. These findings, together with previous reports of liposome association with a peptide corresponding to positions 524 to 539 in the GP molecule, offer compelling support for a fusion peptide role for the conserved hydrophobic region in the Ebola virus GP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号