首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Histone octamers of purified monomer nucleosomes were labelled with [3H]dinitrofluorobenzene. Authentic 11 S nucleosomes were reconstituted in vitro from a mixture of [3H]dinitrophenylated histones and excess unlabelled monomer nucleosomes. The reconstituted nucleosomes were found to contain [3H]dinitrophenylated histones H2a and H2b but not [3H]dinitrophenylated histones H3 and H4. Approx. 83% of [3H]dinitrophenylated nucleosomes were immunoprecipitable with anti-dinitrophenyl immunoglobulin and Staphylococcus aureus. These results demonstrate that histones H2a and H2b contain dinitrofluorobenzene-reactive groups that can be modified without destroying their ability to participate in nucleosome formation in vitro.  相似文献   

2.
3.
Summary A short review is given on the biochemistry of histone acetylation. Sites of acetylation in nucleosomal histones and enzymes involved in acetylation and deacetylation are discussed. Studies relating to the influence of these modifications on the structure of nucleosomes and chromatin are especially emphasized in this article.  相似文献   

4.
The kinetics of the chromatin core particle reassembly reaction in solution were quantitatively studied under conditions such that nucleohistone aggregation did not occur. Core particles, salt-jumped rapidly by dilution from 2.5 m-NaCl (in which DNA and histones do not interact) to 0.6 m-NaCl (in which core particles are nearly intact), reassemble in two distinct time ranges. Approximately 75% of the DNA refolds into core particle-like structures “instantaneously” as measured by several physical and chemical techniques with dead times in the seconds to minutes time range. The remaining DNA refolds with relaxation times ranging from 250 minutes at 0 °C to 80 minutes at 37 °C; this slow effect cannot be attributed to sample heterogeneity. The fraction of slowly refolding DNA and the slow relaxation time are independent of the core particle concentration. Transient intermediates present during the slow phase of refolding were identified as free DNA and core particle-like structures containing excess histone. Mixing experiments with DNA, histones, and core particles showed that core particle-histone interactions are responsible for the slow kinetics of DNA refolding. Upon treatment of reassembling core particles with the protein crosslinking reagent, dimethylsuberimidate, the slow phase of the reassembly reaction was arrested and a 13 S particle containing DNA and two octamers of histone was isolated. Consistent with the nature of this kinetic intermediate, it is shown that in 0.6 m-NaCl, core particles co-operatively bind at least one additional equivalent of histones with high affinity in the form of excess octamers. Also, core particles continue to adsorb considerably more histones with a weaker association constant of the order 105m?1 (in units of octamers) to a maximum value of 12 ± 2 equivalents (octamers) per core particle. The sedimentation coefficient increases with the two-thirds power of the molecular weight of the complex, as it would in the case of clustered spheres.A reassembly mechanism consistent with the data is presented, and other simple mechanisms are excluded. In the proposed mechanism, core particles reassemble very rapidly and compete effectively with DNA for histones such that approximately one-third of the particles initially formed are complexed with an excess octamer of histones, and 25% of the total DNA remains uncomplexed. The amount of this unusual reaction intermediate decays slowly to an equilibrium value of about 10%, thereby leaving 9% of the total DNA uncomplexed. Approximate values are calculated for the free energies, rate constants, and two of the activation energies which characterize this migrating octamer mechanism. This mechanism provides a means whereby histone octamers can be temporarily stripped off DNA at a modest free energy cost, approximately 2.6 kcal per nucleosome. Also, the properties of excess histone adsorption by chromatin and octamer migration suggest an efficient mechanism, consistent with observations by others, for nucleosome assembly in vivo during replication.  相似文献   

5.
Formation of hybrid nucleosomes cantaining new and old histones.   总被引:1,自引:2,他引:1       下载免费PDF全文
5 mM hydroxyurea (HU) inhibits DNA synthesis in mouse P815 cells by 94-97% in less than 1 hr. Nevertheless, histone synthesis continues and newly-synthesised histones are incorporated into non-replicating chromatin at a rate of about 20% of that in control exponentially-growing cells. To study the organization of these histones in chromatin P815 cells were treated with 5 mM HU in medium containing dense (15N, 13C, 2H) - substituted amino acids. After inhibition of DNA synthesis, newly-synthesised histones were labelled with (3H)-arginine. The cells were harvested 90 min later, and mono- and oligonucleosomes were prepared and analysed on metrizamide-triethanolamine (MA-TEA density gradients. Analysis of the distribution of 3H-labelled histones in these gradients shows that they are incorporated into hybrid mononucleosomes containing both new and old histones. It is also shown that these hybrid nucleosomes are not randomly distributed, but show a certain tendency to be clustered in certain chromatin regions.  相似文献   

6.
When whole steer kidney nuclei were treated with dimethyl-3,3'-dithiobisproprionimidate, N,N'-bis(2-carboxyimidomethyl) tartaramide dimethyl ester, or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide under approximately physiological ionic conditions, H1 histone was cross-linked to each of the four histones in the nucleosome core. The carbodiimide reagent, which introduces no atoms between the amino acid side chains being joined, seemed to give the same result as did the longer di-imidate cross-linking reagents. When conditions were optimized for the production of of H1-containing dimers, the total yield of H1-core histone heterodimers was nearly equal to the yield of H1 homodimers. Naturally occurring H1 dimers and cross-linked heterodimers of high mobility group proteins 14 and 17 with H1 and core histones were also observed.  相似文献   

7.
8.
Formamidopyrimidine-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that excises oxidized purine bases, most notably the mutagenic 7-hydro-8-oxoguanine, from damaged DNA. In order to identify specific contacts between nucleobases of DNA and amino acids from the E. coli Fpg protein, photochemical cross-linking was employed using new reactive DNA duplexes containing 5-[4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]-2'-deoxyuridine dU* residues near the 7-hydro-8-oxoguanosine (oxoG) lesion. The Fpg protein was found to bind specifically and tightly to the modified DNA duplexes and to incise them. The nicking efficiency of the DNA duplex containing a dU* residue 5' to the oxoG was higher as compared to oxidized native DNA. The conditions for the photochemical cross-linking of the reactive DNA duplexes and the Fpg protein have been optimized to yield as high as 10% of the cross-linked product. Our results suggest that the Fpg protein forms contacts with two nucleosides, one 5' adjacent to oxoG and the other 5' adjacent to the cytidine residue pairing with oxoG in the other strand. The approaches developed may be applicable to pro- and eukaryotic homologues of the E. coli Fpg protein as well as to other repair enzymes.  相似文献   

9.
10.
Electrophoresis fractionates nucleosomes which possess different protein compositions. We report here a procedure for transferring the DNA components of electrophoretically resolved nucleosomes to diazobenzyloxymethyl cellulose (DBM-paper). Histones are first removed from nucleosome components by electrophoresis in the presence of cetyltrimethylammonium bromide (CTAB), leaving DNA fragments fixed within the original gel as the CTAB salts. The DNA is then converted to the sodium salt, denatured, and electrophoretically transferred to DBM-paper. The overall pattern of DNA on the resulting blot is visualized either by fluorography or by immunoautoradiography. This DNA pattern is then compared with autoradiograms obtained after hybridizing the same blot with specific 32P-labeled probes. Using mouse satellite DNA as a hybridization probe, we illustrate the above techniques and demonstrate that nucleosomes carrying satellite sequences are compositionally heterogeneous. The procedures described here should also be useful in the analysis of the nucleic acid components associated with other nucleoprotein complexes.  相似文献   

11.
Histone proximity in chromatin was studied with the cleavable crosslinking reagent, dithiobissuccinimidyl propionate. Crosslinks between H4 and H2a, H4 and H2b, H4 and H3, H2a and H2b, H2b and H3 were found. H1 is also crosslinked to the nucleosomal histones. In nuclei, unsheared chromatin, and H1 depleted chromatin, the four nucleosomal histones are crosslinked at similar relative rates both in 5 mM salt and 100 mM salt. After micrococcal nuclease treatment to generate nucleosomes, H2a and H2b are crosslinked faster than H4 and H3. C14-NEM titration of thiopropionate residues bound to each histone shows that H2a and H2b are more accessible to this reagent after nuclease treatment but that the increased binding was not sufficient by itself to explain the increase in crosslinking. Bolton Hunter reagent was used to further study the accessibility of the four nucleosomal histones in whole chromatin and nuclease digested chromatin. These studies showed that salt increases the accessibility of all four histones while nuclease treatment decreases H4 accessibility.  相似文献   

12.
The four histones H2A, H2B, H3 and H4 from calf thymus, CHO and sea urchin gastrula cells were associated by stepwise dialysis from 2 M NaCl with SV40 DNA Form I. The in vitro-assembled chromatins were visualized by electron microscopy and the size of the DNA fragments generated by digestion with DNase II was determined. Irrespective of the origin of the histones, the size of the smallest DNA band generated at early times of digestion was about 190 base pairs, whereas oligomeric DNA bands were multiples of 140 bp. These results support our previous proposal that the four histones H2A, H2B, H3 and H4 are able to organize more than 140 bp of DNA, but do not provide any evidence that the variability of histones H2A and H2B plays a role in the variability of the DNA repeat length of native chromatins.  相似文献   

13.
Digestion of chromatin DNA in nuclei of sea urchin embryos with pancreatic nuclease and with micrococcal nuclease give additional details concerning the interaction between DNA and histones. A specific site of hydrolysis appears to be located on the nucleosome in such a position as to split the DNA unit length in two equivalent fragments of about 60–70 base pairs in length. The complete digestion of chromatin DNA appears to depend on the low stability of the nucleosome containing the split DNA fragments.  相似文献   

14.
When chromosomal proteins in chromatin or in mononucleosomes were extensively cross-linked with an imido ester, the H1-containing nonameric histone complex was revealed. In this complex, histone H1 is connected with the octamer of core histones. The cross-linking of H1 to the octamer is realized preferentially through H2a and H3 histones. Some HMG (high mobility group) proteins located presumably in the linker regions of a nucleosome fiber also take part in the formation of dimers, possibly with the histones of a nucleosomal core. The results suggest mutual interactions between some linker-associated proteins and intranucleosomal histones. Experiments involving extensive cross-linking of proteins in the purified mononucleosome subfractions demonstrated differences in the organization of core histones between complete nucleosomes and nucleosomes lacking H1.Abbreviations HMG proteins high mobility group proteins - DMA dimethyladipimidate dihydrochloride - DMP dimethyl-3,3-dithio-bis-propionimidate dihydrochloride  相似文献   

15.
16.
Chemical cross-linking was used to study the interaction of the non-histone chromosomal proteins HMG1 and HMG2 with core histones in H1,H5-depleted nucleosomes or core particles. Cross-linking with a 'zero-length' cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and with a longer (cleavable) cross-linker dimethyl-3,3'-dithiobispropionimidate revealed an interaction of HMG1 and HMG2 with (or proximity to) core histones in both types of particles. These results indicated that the presence of the 40-50-base-pairs-long segment of the 'linker' DNA in nucleosomes was not necessary for the establishment of mutual contacts of HMG1 and HMG2 proteins with core histones. Possible implications of the interaction of HMG1 and HMG2 proteins with histones for the structure and functioning of chromatin are discussed.  相似文献   

17.
V Jackson 《Biochemistry》1988,27(6):2109-2120
Density labeling procedures have been utilized to study the dynamics of histone-histone interactions in vivo. Cells were labeled for 60 min with dense amino acids, and the label was chased for up to 22 h (two replication events for these cells). Nuclei were isolated and treated with formaldehyde to stabilize the histone-histone interactions with a covalent cross-link that produces an octameric complex of two each of H3, H2B, H2A, and H4. This complex was then extracted from the DNA and analyzed on density gradients. The results indicate that new H3,H4 deposits as a tetramer and does not dissociate in the subsequent chases. New H2A,H2B deposited as a dimer and also does not dissociate in subsequent chases. These new histones form hybrid octamers with old histones. On the basis of the new:old ratio in the hybrid octamers, we propose that additional old H2A,H2B from elsewhere in the genome interacts with tetramers of new H3,H4 to form the newly synthesized nucleosomes. It is also observed that 5% of the cross-linked complexes produced by formaldehyde are octamer-octamer (dioctamer). Upon analysis of the density of the dioctamer, the hybrid octamers were found adjacent to octamers that were homogeneous with respect to containing normal density histones. Control experiments are presented to demonstrate that the octamer-octamer cross-links are a product of intrastrand and not interstrand interactions between nucleosomes. These same control experiments also indicate that these procedures do not induce histone exchange during the preparative procedure prior to density gradient analysis. The significance of these results with regard to the dynamics of histone-histone interactions at the replication fork and the potential role in the maintenance of differentiation is discussed.  相似文献   

18.
Hen erythrocyte chromatin was digested with staphylococcal nuclease and fractionated by electrophoresis in polyacrylamide gels. Instead of the three bands described for mouse carcinoma chromatin, four main discrete components (MN1, MN2, MN2E and MN3) were resolved in the mononucleosome fraction of erythrocyte chromatin. MN2 contained all five histones and a DNA fragment of 165–180 base pairs. MN2E comprised four nucleosomal histones plus histone H5 (but not H1) and a DNA fragment of 170–190 base pairs. The relatively nuclease resistant MN3 fraction of erythrocyte nucleosomes contained H1 but no H5 histone. A more accurate analysis of the MN2 fraction in mouse carcinoma nucleosomes revealed some additional microheterogeneity depending on the presence of two different subfractions of H1.  相似文献   

19.
Positioning of nucleosomes was examined in a reconstituted system using a plasmid DNA and histones from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells. The present studies indicate that the arrangement of nucleosomes, composed of normal human histones, in a region near the SV40 origin of replication on the plasmid DNA, is nonrandom. The alignment of nucleosomes in this region was not affected by the presence of histone H1. No difference in nucleosome positioning was observed when the nucleosomes were composed of histones from XPA cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号