首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hong H  Lu Y  Ji ZN  Liu GQ 《Journal of neurochemistry》2006,98(5):1465-1473
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.  相似文献   

3.
Among the different factors which can contribute to CNS alterations associated with HIV infection, Tat protein is considered to play a critical role. Evidence indicates that Tat can contribute to brain vascular pathology through induction of endothelial cell activation. In the present study, we hypothesized that Tat can affect expression of P-glycoprotein (P-gp) in brain microvascular endothelial cells (BMEC). P-gp is an ATP-dependent cellular efflux transporter which is involved in the removal of specific non-polar molecules, including drugs used for highly active antiretroviral therapy (HAART). Treatment of BMEC with Tat(1-72) resulted in P-gp overexpression both at mRNA and protein levels. These alterations were confirmed in vivo in brain vessels of mice injected with Tat(1-72) into the hippocampus. Furthermore, pre-treatment of BMEC with SN50, a specific NF-kappaB inhibitor, protected against Tat(1-72)-stimulated expression of mdr1a gene, i.e. the gene which encodes for P-gp in rodents. Tat(1-72)-mediated changes in P-gp expression were correlated with increased rhodamine 123 efflux, indicating the up-regulation of transporter functions of P-gp. These results suggest that Tat-induced overexpression of P-gp in brain microvessels may have significant implications for the development of resistance to HAART and may be a contributing factor for low efficacy of HAART in the CNS.  相似文献   

4.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

5.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

6.
7.
Summary The effects of anoxia and reoxygenation on major antioxidant enzyme activities were investigatedin vitro in immortalized rat brain endothelial cells (RBE4 cells). A sublethal anoxic period of 12 h was assessed for RBE4 cells using the neutral red uptake test. Anoxia markedly influenced the specific activity of catalase and superoxide dismutase, with no major effect on glutathione peroxidase or glutathione reductase. After 24 h postanoxia, the superoxide dismutase activity modulated by the presence or absence of oxygen returned to control value. Damage and recovery of RBE4 immortalized rat brain endothelial cells in culture after exposure to free radicals and other oxygen-derived species provides a usefulin vitro model to study anoxia-reoxygenation trauma at the cellular level.  相似文献   

8.
To study the relationship between cadmium (Cd)-induced phytotoxicity and oxidative stress, we grew Cd-sensitive wild-type (WT) and Cd-resistant type (RT) seedlings ofArabidopsis thaliana on MS media containing up to 500 μM CdCl2. The resistant seedlings showed higher biomasses and lower hydrogen peroxide and lipid peroxidation levels, the latter expressed in terms of malondialdehyde (MDA) production. These results indicate that RT plants experience lower oxidative stress when exposed to Cd. Furthermore, compared with the WT, RT seedlings have significantly higher activities of superoxide dismutase (SOD) and enzymes related to hydrogen peroxide removal, e.g., guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR). These differential responses suggest that such phytotoxicity could be induced by oxidative stress, and that lower accumulations of hydrogen peroxide confer Cd tolerance in seedlings.  相似文献   

9.
Zhu HJ  Liu GQ 《Life sciences》2004,75(11):1313-1322
The accumulation of glutamate in the extracellular space in the central nervous system (CNS) plays a major part in ischemic and anoxic damage. In this study, we examined the effect of glutamate on the expression and activity of P-glycoprotein (P-gp) in rat brain microvessel endothelial cells (RBMECs) making up the blood-brain barrier (BBB). The level of P-gp expression significantly increased in RBMECs after the treatment of 100 microM glutamate. At this concentration, glutamate also enhanced rat mdr1a and mdr1b mRNA levels determined by RT-PCR analysis. Flow cytometry was used to study P-gp activity by analysis of intracellular rhodamine123 (Rh123) accumulation. Overexpression of P-gp resulted in a decreased intracellular accumulation of Rh123 in RBMECs. Glutamate-induced increase of intracellular reactive oxygen species (ROS) was observed by using the 2',7'-dichlorofluorescein (2',7'-DCF) assay. MK-801, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and ROS scavenger N-acetylcysteine obviously blocked ROS generation and attenuated the changes of both expression and activity of P-gp induced by glutamate in RBMECs. These data suggested that glutamate up-regulated P-gp expression in RBMECs by an NMDA receptor-mediated mechanism and that glutamate-induced generation of ROS was linked to the regulation of P-gp expression. Therefore, transport of P-gp substrates in BBB appears to be affected during ischemic and anoxic injury.  相似文献   

10.
Cultured human and rat endothelial cells were used to study cellular toxicity and Ca2+ signalling upon exposure to reactive oxygen species. Superoxide and hydrogen peroxide (O2·–/H2O2) were produced by the hypoxanthine/xanthine oxidase system (HX/XO) and caused intracellular Ca2+ concentration ([Ca2+]i) to rise steadily when activities above 2 mU/ml were used. These Ca2+ increases were also measured when the glucose/glucose oxidase (G/GO) system above 5 mU/ml was used to produce hydrogen peroxide (H2O2). Gross morphological changes appeared to parallel elevated [Ca2+]i levels preceding cell death. However, when HX/XO or G/GO were used at non toxic doses rapid and transient changes in [Ca2+]i were measured. These treatments did not alter subsequent receptor mediated Ca2+ signalling induced by ATP (10 M) or histamine (100 M). Superoxide dismutase (50 U/ml), which dismutates O2·minus; into H2O2 al ient [Ca2+]i responses. H2O2 added directly was able to induce similar Ca2+ transients when concentrations of at least 500 M were used. Buffering trace amounts of iron (o-phenanthroline; 200 M) in order to inhibit úOH radical formation was not effective to alter Ca2+ changes. Experiments performed in Ca2+-free buffer showed a similar rise in [Ca2+]i and readdition of Ca2+ to the extracellular medium indicated the activation of store operated Ca2+ entry. Blocking Ca2+-ATPases of the endoplasmatic reticulum with thapsigargin (1 M) inhibited ROS induced transient increases and cells preincubated with pertussis toxin (200 nM) showed unchanged Ca2+ transients after exposure to both enzyme systems. Phospholipase C inhibitor U73122 (2 M) effectively reduced hydrogen peroxide induced emptying of intracellular stores. Taken together, we demonstrate that enzymatically produced non-toxic H2O2 rather than O· ndash; or · OH causes calcium signalling from thapsigargin sensitive stores, and activates store operated Ca2+ entry at least partially by activating phospholipase C. These changes clearly differ from pathological oxidative stress associated with a progressive increase in [Ca2+]i.  相似文献   

11.
In situ localization of P-glycoprotein (ABCB1) in human and rat brain.   总被引:6,自引:0,他引:6  
Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellularly, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level.  相似文献   

12.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from blood to brain extracellular fluid. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain endothelium and contributes to the formation of a functional barrier to lipid-soluble drugs such as anticancer agents. The mdr1a P-gp-encoding gene is exclusively expressed in the rodent BBB. Primary cultures of rat brain endothelial cells and GP8.3 cells showed a dramatic decrease in mdr1a mRNA level and some expression of mdr1b mRNA. GPNT cells, derived from GP8.3 cells after transfection with a puromycin resistance gene, were chronically treated with 5 microg/mL puromycin, a P-gp substrate. Compared with rat brain endothelial cells and GP8.3 cells, GPNT cells exhibited a very high level of expression of mdr1a mRNA together with a moderate level of mdr1b mRNA expression. Accordingly, P-gp expression and activity were strongly increased. When GP8.3 and puromycin-starved GPNT cells were treated with puromycin, mdr1a expression was selectively increased. High expression of mdr1a mRNA in GPNT cells may thus be related to the chronic treatment with puromycin. We conclude that GPNT cells may be used as a valuable rat in vitro model for studying the regulation of mdr1a expression at the BBB level.  相似文献   

13.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   

14.
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll‐like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4‐silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up‐regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide‐treated TLR4 knock‐out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood‐borne noxious agents.

  相似文献   


15.
Cerebral ischemia causes functional alteration of the blood-brain barrier, formed by brain capillary endothelial cells (BCEC). Changes in protein expression and activity of selected differentially expressed enzymes were investigated in BCEC subjected to hypoxia (24 h) alone or followed by a 24-h reoxygenation. BCEC proteins were isolated, separated by 2-DE, and identified by MALDI-MS. Computer-based 2-D gel analysis identified 21 up-regulated proteins and 4 down-regulated proteins after hypoxia alone and 9 proteins that were further up-regulated after posthypoxic reoxygenation. The expression of the majority of hypoxia-induced proteins was reduced toward control levels during reoxygenation. The most prominent changes were identified for glycolytic enzymes (e.g., phosphoglycerate kinase), proteins of the ER (e.g., calreticulin), and cytoskeletal (e.g., vimentin) proteins. The results indicate that BCEC respond to hypoxia/reoxygenation by adaptive up-regulation of proteins involved in the glycolysis, protein synthesis, and stress response.  相似文献   

16.
As an important reactive oxygen species (ROS), hydrogen peroxide plays a significant role in the life activity system, and its abnormal levels are closely related to many diseases. Developing effective fluorescent probes for detecting hydrogen peroxide is very urgent. Therefore, we constructed a probe Z that can detect hydrogen peroxide in ratio. It has naphthimide as the fluorophore and phenylboronic acid pinacol esters as the recognition group. It shows higher sensitivity, lower detection limit, higher selectivity, and broad pH applicability. Moreover, probe Z has low cytotoxicity that can be used to detect exogenous hydrogen peroxide in HeLa cells and might be a potential tool for studying hydrogen peroxide in physiological activities.  相似文献   

17.
Deficiency of complex I in the respiratory chain and oxidative stress induced by hydrogen peroxide occur simultaneously in dopaminergic neurones in Parkinson's disease. Here we demonstrate that the membrane potential of in situ mitochondria (Delta Psi m), as measured by the fluorescence change of JC-l (5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbezimidazolyl-carbocyani ne iodide), collapses when isolated nerve terminals are exposed to hydrogen peroxide (H(2)O(2), 100 and 500 microM) in combination with the inhibition of complex I by rotenone (5 nM-1 microM). H(2)O(2) reduced the activity of complex I by 17%, and the effect of H(2)O(2) and rotenone on the enzyme was found to be additive. A decrease in Delta Psi m induced by H(2)O(2) was significant when the activity of complex I was reduced to a similar extent as found in Parkinson's disease (26%). The loss of Delta Psi m observed in the combined presence of complex I deficiency and H(2)O(2) indicates that when complex I is partially inhibited, mitochondria in nerve terminals become more vulnerable to H(2)O(2)-induced oxidative stress. This mechanism could be crucial in the development of bioenergetic failure in Parkinson's disease.  相似文献   

18.
The involvement of H2O2 in cataract development has been established inboth human patients and animal models. At the molecular level H2O2 has beenobserved to cause damage to DNA, protein and lipid. To explore the oxidativestress response of the lens system at the gene expression level, we haveexamined the effects of H2O2 on the mRNA change of the proto-oncogenes,c-jun, c-fos and c-myc in a rabbit lens cell line, N/N1003A. H2O2 treatmentof the rabbit lens epithelial cells for 60 min induces quick up-regulationof both c-jun and c-fos mRNAs. The maximal induction is 38 fold for c-jun at150 µM and 72 fold for c-fos at 250 µM H2O2. Treatment ofN/N1003A cells with 50-250 µM H2O2 for 60 min leads to a 2-5 foldincrease of the c-myc mRNA level. H2O2 also induces an up-regulation intransactivity of the activating protein-1 (AP-1) as shown with a reportergene driven by a prolactin gene promoter with 4 copies of AP-1 binding sitesinserted in the upstream of the promoter. Maximal induction occurs with 150µM H2O2. In the same system, the antioxidants, N-acetyl-cysteine (NAC)and pyrrolidine dithiocarbamate (PDTC) at concentrations shown toup-regulate the mRNAs of both c-jun and c-fos, also enhance thetransactivity of AP-1. NAC and PDTC have different effects in modulating theinduction of AP-1 activity by H2O2 and TPA. These results reveal thatoxidative stress regulates expression of various regulatory genes in lenssystems, which likely affects cell proliferation, differentiation andviability and thus affect normal lens functions.  相似文献   

19.
Studies indicate that leptin is involved in not only energy expenditure and food intake, but also in protection against apoptosis, in inflammation and in stimulation of proliferation in many cell types. However, leptin treatment increases the oxidative stress in many cell culture studies. This contradiction evoked a question of whether leptin acts as an oxidant or antioxidant on glial cells. We investigated the effect of leptin on glial cell survival and hydrogen peroxide (H2O2)-induced toxicity in vitro. The survival rate of the cells was determined by using 3-(4,5-D-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, thyazolyl blue (MTT) method. The cells obtained from the whole brain of 1–3 day-old rat were treated with 1, 10, 100 and 1000 ng/mL leptin for 24 or 72 h. Either the pretreatment of leptin alone for 5 h or leptin combined simultaneously with H2O2 or well known antioxidant glutathione (GSH) were applied to the cells. Malondialdehyde (MDA) levels were measured in cell lysates to which leptin was added for 24 h. The 100 and 1000 ng/mL leptin treatment for 72 h increased the glial viability by 19% and 36%, respectively. The dose of H2O2 that killed 75% of the cells was determined as 100 μM. GSH at different doses was applied as a positive control to the cells and the dose of 500 μM completely eliminated toxic effect of 100 μM H2O2. Either the pretreatment of leptin alone for 5 h or leptin combined simultaneously with H2O2 could not eliminate H2O2-caused toxicity. Furthermore, respective leptin doses did not change the glia MDA level. We suggest that leptin can increase glia survival dose dependently, but can not eliminate H2O2-induced oxidation in primary mixed glial cell culture.  相似文献   

20.
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号