首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a high capacity for mating with MATa strains. The MAT alpha/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MAT alpha homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MAT alpha/MATa):two haploid segregants. Therefore, MAT switches occur in MAT alpha/mata-2 HO/ho cells to produce MAT alpha/Mata cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MAT alpha and subsequently to a functional MATa. Among 32 MAT alpha to MATa switches tested, where the MAT alpha was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, complements the matalpha ste1-5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the Mat alpha locus. No mata-2 was recovered by HO-mediated switching of MAT alpha (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MAT alpha and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (HICKS, STRATHERN and HERSKOWITZ )977b) proposed to explain MAT interconversions.  相似文献   

2.
The structure of transposable yeast mating type loci   总被引:133,自引:0,他引:133  
K A Nasmyth  K Tatchell 《Cell》1980,19(3):753-764
A recombinant plasmid containing a MAT alpha mating type locus of Saccharomyces cerevisiae has been isolated by its ability to complement a sterile mat alpha mutation. The plasmid hybridizes to restriction fragments containing both active mating type loci (MATa and MAT alpha) and both silent mating type loci (HMRa and HML alpha). All loci therefore have common sequences. Recombinant lambda clones of the locihave been isolated by plaque hybridization and their structures have been compared by a heteroduplex analysis. At its center, each locus contains one of two apparently nonhomologous sequences. Loci concerned with the alpha phenotype (MAT alpha and HML alpha) contain and 850 bp alpha-specific sequence, whereas loci concerned with the a phenotype (MATa and HMRa) contain a 700 bp a-specific sequence. The a- or alpha-specific sequences are surrounded by DNA sequences that are common to all loci. These homologous sequences extend for 230 bp on the left and 700 bp on the right. They appear to be unrelated to each other. Surprisingly, HML alpha and HMRa differ in their extent of homology to MATa and MAT alpha outside the above regions. HMRa lacks an extensive (700 bp) DNA sequence to the right of the large right-hand homologous region, and possibly also a small (90 bp) sequence to the left of the small left-hand homologous region, both of which are present at HML alpha, MATa and MAT alpha. Hybridization studies have shown that the 700 bp sequence is present at HMLa but absent at HMR alpha alleles. It is therefore characteristic of HML, irrespective of whether it contains a- or alpha-specific sequences. The results imply that mating type interconversion is effected by transposition of DNA sequences from HML or HMR to MAT, as predicted by the controlling element model of Oshima and Takano (1971) and the Cassette model of Hicks, Strathern and Herskowitz (1977).  相似文献   

3.
Coconversion of flanking sequences with homothallic switching   总被引:16,自引:0,他引:16  
C McGill  B Shafer  J Strathern 《Cell》1989,57(3):459-467
Homothallic switching in S. cerevisiae involves replacing the DNA of the expressed allele at the mating type locus (MAT) with a duplicate of sequences from the unexpressed loci HML or HMR. The MATa and MAT alpha alleles differ by a DNA substitution that is flanked by sequences in common to MAT, and the donor loci HML and HMR. Using restriction site polymorphisms between MAT and the donor loci, we demonstrate that the extent of MAT DNA that is replaced during switching is variable and that there is a gradient of coconversion across the X region. Coconversion events occur on both sides of the double-strand cleavage by the HO gene product. The two cells produced after a switch often differ at the flanking site, indicating a DNA heteroduplex intermediate.  相似文献   

4.
K. S. Weiler  L. Szeto    J. R. Broach 《Genetics》1995,139(4):1495-1510
Homothallic strains of Saccharomyces cerevisiae can convert mating type from a to α or α to a as often as every generation, by replacing genetic information specifying one mating type at the expressor locus, MAT, with information specifying the opposite mating type. The cryptic mating type information that is copied and inserted at MAT is contained in either of two loci, HML or HMR. The particular locus selected as donor during mating type interconversion is regulated by the allele expressed at MAT. MATa cells usually select HML, and MATα cells usually select HMR, a process referred to as donor preference. To identify factors required for donor preference, we isolated and characterized a number of mutants that frequently selected the nonpreferred donor locus during mating type interconversion. Many of these mutants were found to harbor chromosome rearrangements or mutations at MAT or HML that interfered with the switching process. However, one mutant carried a recessive allele of CHL1, a gene previously shown to be required for efficient chromosome segregation during mitosis. Homothallic strains of yeast containing a null allele of CHL1 exhibited almost random selection of the donor locus in a MATa background but were normal in their ability to select HMR in a MATα background. Our results indicate that Chl1p participates in the process of donor selection and are consistent with a model in which Chl1p helps establish an intrinsic bias in donor preference.  相似文献   

5.
Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.  相似文献   

6.
In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.  相似文献   

7.
Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.  相似文献   

8.
9.
Homothallic switching of yeast mating type genes occurs as often as each cell division, so that a colony derived from a single haploid spore soon contains an equal number of MATa and MAT alpha cells. Cells of opposite mating types conjugate, and eventually the colony contains only nonmating MATa/MAT alpha diploids. Mutations that reduce the efficiency of homothallic MAT conversions yield colonies that still contain many haploid cells of the original spore mating type plus a few recently generated cells of the opposite mating type. These (a greater than alpha)- or (alpha greater than a)-mating colonies also contain some nonmating diploid cells. As an alternative to microscopic pedigree analysis to determine the frequency of mating type conversions in a variety of mutant homothallic strains, we analyzed the proportions of MATa, MAT alpha, and MATa/MAT alpha cells in a colony by examining the mating phenotypes of subclones. We developed a mathematical model that described the proportion of cell types in a slow-switching colony. This model predicted that the proportion of nonmating cells would continually increase with the size (age) of a colony derived from a single cell. This prediction was confirmed by determining the proportion of cell types in colonies of an HO swi1 strain that was grown for different numbers of cell divisions. Data from subcloning (a greater than alpha) and (alpha greater than a) colonies from a variety of slow-switching mutations and chromosomal rearrangements were used to calculate the frequency of MAT conversions in these strains.  相似文献   

10.
Analysis of Y-Linked Mutations to Male Sterility in DROSOPHILA MELANOGASTER   总被引:3,自引:2,他引:1  
Kennison JA 《Genetics》1983,103(2):219-234
Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MATa and MAT alpha. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML OR HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MAT alpha cells carring AON1 are defective in mating. (2) AON1 allows MAT alpha/MAT alpha but not MATa/MATa diploids to sporulate; thus, AON1 mimics the MATa requirement for sporulation. (3) mata-1 cells that carry AON1 are MATa phenocopies, i.e., MAT alpha/mata-1 AON1 diploids behave as standard MAT alpha/MATa cells; therefore, AON1 suppresses the defect of mata-1. (4) AON1 maps at or near HMRa. (5) Same-site revertants from AON1 lose the ability to convert mating type to MATa, indicating that reversion is associated with the loss of a functional HMRa locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMRa.  相似文献   

11.
During homothallic switching of the mating-type (MAT) gene in Saccharomyces cerevisiae, a- or alpha-specific sequences are replaced by opposite mating-type sequences copied from one of two silent donor loci, HML alpha or HMRa. The two donors lie at opposite ends of chromosome III, approximately 190 and 90 kb, respectively, from MAT. MAT alpha cells preferentially recombine with HMR, while MATa cells select HML. The mechanisms of donor selection are different for the two mating types. MATa cells, deleted for the preferred HML gene, efficiently use HMR as a donor. However, in MAT alpha cells, HML is not an efficient donor when HMR is deleted; consequently, approximately one-third of HO HML alpha MAT alpha hmr delta cells die because they fail to repair the HO endonuclease-induced double-strand break at MAT. MAT alpha donor preference depends not on the sequence differences between HML and HMR or their surrounding regions but on their chromosomal locations. Cloned HMR donors placed at three other locations to the left of MAT, on either side of the centromere, all fail to act as efficient donors. When the donor is placed 37 kb to the left of MAT, its proximity overcomes normal donor preference, but this position is again inefficiently used when additional DNA is inserted in between the donor and MAT to increase the distance to 62 kb. Donors placed to the right of MAT are efficiently recruited, and in fact a donor situated 16 kb proximal to HMR is used in preference to HMR. The cis-acting chromosomal determinants of MAT alpha preference are not influenced by the chromosomal orientation of MAT or by sequences as far as 6 kb from HMR. These data argue that there is an alpha-specific mechanism to inhibit the use of donors to the left of MAT alpha, causing the cell to recombine most often with donors to the right of MAT alpha.  相似文献   

12.
Mating type switching in Saccharomyces cerevisiae initiates when Ho endonuclease makes a site-specific double-stranded break at MAT, the yeast mating type locus. To identify other proteins involved in this process, we examined whether extracts prepared from ho- mutants contain additional factors that bind near the recognition sequence for Ho. Using an electrophoretic mobility shift assay, we isolated a chromatographic fraction that contains an activity, named YZbp, which binds to two sequences flanking the recognition sequence at MATalpha and to one sequence overlapping it at MATa. MAT plasmids carrying mutations in the YZbp recognition sequence are cleaved by purified Ho at wild-type efficiencies in an in vitro assay. These same plasmids, however, are not cleaved by Ho inside cells, demonstrating that YZbp acts as a positive activator of in vivo cleavage. YZbp is present in all cell types, even those not undergoing mating type switching, suggesting that it has additional cellular functions.  相似文献   

13.
The yeast MATa1 gene contains two introns   总被引:37,自引:7,他引:30       下载免费PDF全文
A M Miller 《The EMBO journal》1984,3(5):1061-1065
  相似文献   

14.
During conjugation in Saccharomyces cerevisiae, two cells of opposite mating type (MATa and MAT alpha) fuse to form a diploid zygote. Conjugation requires that each cell locate an appropriate mating partner. To investigate how yeast cells select a mating partner, we developed a competition mating assay in which wild-type MAT alpha cells have a choice of two MATa cell mating partners. We first demonstrated that sterile MAT alpha 1 cells (expressing no a- or alpha-specific gene products) do not compete with fertile MATa cells in the assay; hence, wild-type MATa and MAT alpha cells can efficiently locate an appropriate mating partner. Second, we showed that a MATa strain need not be fertile to compete with a fertile MATa strain in the assay. This result defines an early step in conjugation, which we term courtship. We showed that the ability to agglutinate is not necessary in MATa cells for courtship but that production of a-pheromone and response to alpha-pheromone are necessary. Thus, MATa cells must not only transmit but must also receive and then respond to information for effective courtship; hence, there is a "conversation" between the courting cells. We showed that the only alpha-pheromone-induced response necessary in MATa cells for courtship is production of a-pheromone. In all cases tested, a strain producing a higher level of a-pheromone was more proficient in courtship than one producing a lower level. We propose that during courtship, a MAT alpha cell selects the adjacent MATa cell producing the highest level of a-pheromone.  相似文献   

15.
The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.  相似文献   

16.
A mutation defective in the homothallic switching of mating type alleles, designated hml alpha-2, has previously been characterized. The mutation occurred in a cell having the HO MATa HML alpha HMRa genotype, and the mutant culture consisted of ca. 10% a mating type cells, 90% nonmater cells of haploid cell size, and 0.1% sporogenous diploid cells. Genetic analyses revealed that nonmater haploid cells have a defect in the alpha 2 cistron at the MAT locus. This defect was probably caused by transposition of a cassette originating from the hml alpha-2 allele by the process of the homothallic mating type switch. That the MAT locus of the nonmater cells is occupied by a DNA fragment indistinguishable from the Y alpha sequence in electrophoretic mobility was demonstrated by Southern hybridization of the EcoRI-HindIII fragment encoding the MAT locus with a cloned HML alpha gene as the probe. The hml alpha-2 mutation was revealed to be a one-base-pair deletion at the ninth base pair in the X region from the X and Y boundary of the HML locus. This mutation gave rise to a shift in the open reading frame of the alpha 2 cistron. A molecular mechanism for the mating type switch associated with the occurrence of sporogenous diploid cells in the mutant culture is discussed.  相似文献   

17.
18.
Tetrad analysis of MATa/MAT alpha diploids of Saccharomyces cerevisiae generally yields 2 MATa:2MAT alpha meiotic products. About 1 to 1.8% of the tetrads yield aberrant segregations for this marker. Described here are experiments that determine whether the aberrant meiotic segregations at the mating-type locus are ascribable to gene conversions or to MAT switches, that is, to mating-type interconversions. Diploid strains incapable of switching MATa to MAT alpha, or the converse, nevertheless display changes of MATa to MAT alpha, or the reverse. These events must be attributed to gene conversion. Further, we suggest that MATa and MAT alpha alleles may represent nonhomologous sequences of DNA since they fail to display postmeiotic segregations.  相似文献   

19.
K. S. Weiler  J. R. Broach 《Genetics》1992,132(4):929-942
Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HML alpha and MAT alpha cells preferentially select HMRa. Such preferential selection indicates that the cell is able to distinguish between HML and HMR during mating type interconversion. Accordingly, we designed experiments to identify those features perceived by the cell to discriminate HML and HMR. We demonstrate that discrimination does not derive from the different structures of the HML and HMR loci, from the unique sequences flanking each donor locus nor from any of the DNA distal to the HM loci on chromosome III. Moreover, we find that the sequences flanking the MAT locus do not function in the preferential selection of one donor locus over the other. We propose that the positions of the donor loci on the left and right arms of chromosome III is the characteristic utilized by the cell to distinguish HML and HMR. This positional information is not generated by either CEN3 or the MAT locus, but probably derives from differences in the chromatin structure, chromosome folding or intranuclear localization of the two ends of chromosome III.  相似文献   

20.
The kinetics of mating type switching in Saccharomyces cerevisiae can be followed at the DNA level by using a galactose-inducible HO (GAL-HO) gene to initiate the event in synchronously growing cells. From the time that HO endonuclease cleaves MAT a until the detection of MAT alpha DNA took 60 min. When unbudded G1-phase cells were induced, switched to the opposite mating type in "pairs." In the presence of the DNA synthesis inhibitor hydroxyurea, HO-induced cleavage occurred but cells failed to complete switching. In these blocked cells, the HO-cut ends of MATa remained stable for at least 3 h. Upon removal of hydroxyurea, the cells completed the switch in approximately 1 h. The same kinetics of MAT switching were also seen in asynchronous cultures and when synchronously growing cells were induced at different times of the cell cycle. Thus, the only restriction that confined normal homothallic switching to the G1 phase of the cell cycle was the expression of HO endonuclease. Further evidence that galactose-induced cells can switch in the G2 phase of the cell cycle was the observation that these cells did not always switch in pairs. This suggests that two chromatids, both cleaved with HO endonuclease, can interact independently with the donors HML alpha and HMRa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号