首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang WT  Pan CY  Rajanbabu V  Cheng CW  Chen JY 《Peptides》2011,32(2):342-352
The inhibitory function of tilapia hepcidin (TH)1-5, an antimicrobial peptide, was not examined in previous studies. In this study, we synthesized the TH1-5 peptide and tested TH1-5's antitumor activity against several tumor cell lines. We show that TH1-5 inhibited the proliferation of tumor cells and reduced colony formation in a soft agar assay. Scanning electron microscopy and transmission electron microscopy showed that TH1-5 altered the membrane structure similar to the function of a lytic peptide. Acridine orange/ethidium bromide staining, a wound-healing assay, and a flow cytometric analysis showed that TH1-5 induced necrosis with high-concentration treatment and induced apoptosis with low-concentration treatment. Inflammation is known to be closely associated with the development of cancer. TH1-5 showing anti-inflammatory effects in a previous publication induced us to evaluate the anti-inflammatory effects in cancer cell lines through the expressions of immune-related genes after being treated with the TH1-5 peptide. However, real-time qualitative RT-PCR indicated that TH1-5 treatment induced downregulation of the expressions of interleukin (IL)-6, IL-8, IL-12, IL-15, interferon-γ, CTSG, caspase-7, and Bcl-2, and upregulation of IL-2 and CAPN5 in HeLa cells, and upregulation of IL-8 and CTSG in HT1080 cells. These results suggest that TH1-5 possibly induces an inflammatory response in HeLa cells, but not in HT1080 cells. Overall, these results indicate that TH1-5 possesses the potential to be a novel peptide for cancer therapy.  相似文献   

2.
Hsu JC  Lin LC  Tzen JT  Chen JY 《Peptides》2011,32(6):1110-1116
Pardaxin, a pore-forming antimicrobial peptide that encodes 33 amino acids was isolated from the Red Sea Moses sole, Pardachirus mamoratus. In this study, we investigated its antitumor activity in human fibrosarcoma (HT-1080) cells and epithelial carcinoma (HeLa) cells. In vitro results showed that the synthetic pardaxin peptide had antitumor activity in these two types of cancer cells and that 15 μg/ml pardaxin did not lyse human red blood cells. Moreover, this synthetic pardaxin inhibited the proliferation of HT1080 cells in a dose-dependent manner and induced programmed cell death in HeLa cells. DNA fragmentation and increases in the subG1 phase and caspase 8 activities suggest that pardaxin caused HeLa cell death by inducing apoptosis, but had a different mechanism in HT1080 cells.  相似文献   

3.
As part of a continuing search for potential anticancer drug candidates from antimicrobial peptides of marine organisms, tilapia (Oreochromis mossambicus) hepcidin TH2-3 was evaluated in several tumor cell lines. The results indicated that TH2-3, a synthetic 20-mer antimicrobial peptide, specifically inhibited human fibrosarcoma cell (HT1080 cell line) proliferation and migration. The way in which TH2-3 inhibited HT1080 cell growth was then studied. TH2-3 inhibited HT1080 cell growth in a concentration-dependent manner according to an MTT analysis, which was confirmed by a soft-agar assay and AO/EtBr staining. Scanning electron microscopy revealed that TH2-3 caused lethal membrane disruption in HT1080 cancer cells, and a wound healing assay supported that TH2-3 decreased the migration of HT1080 cells. In addition, c-Jun mRNA expression was downregulated after treatment with TH2-3 for 48–96 h compared to the untreated group. These findings suggest a mechanism of cytotoxic action of TH2-3 and indicate that TH2-3 may be a promising chemotherapeutic agent against human fibrosarcoma cells.  相似文献   

4.
Hsu JC  Lin LC  Tzen JT  Chen JY 《Peptides》2011,32(5):900-910
The antimicrobial peptide, chrysophsin-1, exhibits antimicrobial activities with similar efficiencies for both gram-negative and gram-positive bacteria. In this study, we examined the antitumor activity and modulation of the inflammatory response of a synthetic chrysophsin-1 peptide. In vitro results showed that chrysophsin-1 had greater inhibitory effects against human fibrosarcoma (HT-1080), histiocytic lymphoma (U937), and epithelial carcinoma (HeLa) cells. LDH release by HeLa cells was comparable to that of an MTS assay after treatment with 1.5-3 μg/ml chrysophsin-1 for 24 h. Under SEM and TEM observations, we found no intact cell membranes after chrysophsin-1 treatment of HeLa cells for 8 h. The suggested mechanism of the cytotoxic activity of chrysophsin-1 was disruption of cancer cell membranes. In addition, we also examined caspase-3, -8, and -9 activities by Western blotting; the results excluded the participation of apoptosis in chrysophsin-1's effect on HeLa cells. Stimulation by lipopolysaccharide induced tumor necrosis factor (TNF)-α which was able to modulate chrysophsin-1 treatment of RAW264.7 cells and inhibited endogenous TNF-α release but did not block its secretion. With data from this study, we demonstrate that chrysophsin-1 has antimicrobial and antitumor activities and modulates the inflammatory response in RAW264.7 cells.  相似文献   

5.

Background

Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR).

Experimental

Findings: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR.

Conclusion

This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the conservation of this process across divergent cancer cells and identifies new potential targets in the therapeutic approach to human cancers.  相似文献   

6.
Wang KR  Zhang BZ  Zhang W  Yan JX  Li J  Wang R 《Peptides》2008,29(6):963-968
A novel antimicrobial peptide, polybia-MPI, was purified from the venom of the social wasp Polybia paulista. It has potent antimicrobial activity against both Gram-positive and Gram-negative bacteria, but causing no hemolysis to rat erythrocytes. To date, there is no report about its antitumor effects on any tumor cell lines. In this study we synthesized polybia-MPI and studied its antitumor efficacy and cell selectivity. Our results revealed that polybia-MPI exerts cytotoxic and antiproliferative efficacy by pore formation. It can selectively inhibit the proliferation of prostate and bladder cancer cells, but has lower cytotoxicity to normal murine fibroblasts. In addition, to investigate the structure–activity relationship of polybia-MPI, three analogs in which Leu7, Ala8 or Asp9 replaced by l-Pro were designed and synthesized. l-Pro substitution of Leu7 or Asp9 significantly reduces the content of -helix conformation, and l-Pro substitution of Ala8 can disrupt the -helix conformation thoroughly. The l-Pro substitution induces a significant reduction of antitumor activity, indicating that the -helix conformation of polybia-MPI is important for its antitumor activity. In summary, polybia-MPI may offer a novel therapeutic strategy in the treatment of prostate cancer and bladder cancer, considering its relatively lower cytoxicity to normal cells.  相似文献   

7.
Enhancement of gene transfer using YIGSR analog of Tat-derived peptide   总被引:1,自引:0,他引:1  
Cell penetrating peptide based gene carriers are notably known for low level of gene transfer. To remedy this, as laminin receptor (LR) has been previously linked to tumor metastasis, the LR-binding domain (YIGSR) as well as a scrambled sequence (SGIYR) were added to Tat-derived peptide sequence (YIGSR-Tat and SGIYR-Tat respectively). Peptides cellular uptake was assessed with high-LR (HT1080) and low-LR (HT29) cell lines by flow cytometry. Their ability to form complexes with DNA was examined using YOPRO-1 fluorescence assay and their transfection efficiencies evaluated using a luciferase reporter gene assay. DNA complexes were formed at (+/-) charge ratios as low as 2:1. While no conclusion could be drawn on the effect of YIGSR sequence on peptides uptake in both cell lines, a significant improvement in gene transfection in HT1080 cells was achieved using YIGSR-Tat compared to Tat and SGIYR-Tat. Additionally this increased efficiency was inhibited by excess free YIGSR. No significant difference in transfection efficiency was observed between Tat, SGIYR-Tat and YIGSR-Tat based complexes in HT29 cells. These studies demonstrate that attachment of receptor-binding ligand (YIGSR) to Tat-derived peptide can improve the efficiency of gene transfer in LR-positive cells (HT1080).  相似文献   

8.
We have previously isolated dieckol, a nutrient polyphenol compound, from the brown alga, Ecklonia cava (Lee et al., 2010a). Dieckol shows both antitumor and antioxidant activity and thus is of special interest for the development of chemopreventive and chemotherapeutic agents against cancer. However, the mechanism by which dieckol exerts its antitumor activity is poorly understood. Here, we show that dieckol, derived from E. cava, inhibits migration and invasion of HT1080 cells by scavenging intracellular reactive oxygen species (ROS). H2O2 or integrin signal-mediated ROS generation increases migration and invasion of HT1080 cells, which correlates with Rac1 activation and increased expression and phosphorylation of focal adhesion kinase (FAK). Rac1 activation is required for ROS generation. Depletion of FAK by siRNA suppresses Rac1-ROS-induced cell migration and invasion. Dieckol treatment attenuated intracellular ROS levels and activation of Rac1 as well as expression and phosphorylation of FAK. Dieckol treatment also decreases complex formation of FAK-Src-p130Cas and expression of MMP2, 9, and 13. These results suggest that the Rac1-ROS-linked cascade enhances migration and invasion of HT1080 cells by inducing expression of MMPs through activation of the FAK signaling pathway, whereas dieckol downregulates FAK signaling through scavenging intracellular ROS. This finding provides new insights into the mechanisms by which dieckol is able to suppress human cancer progresssion and metastasis. Therefore, we suggest that dieckol is a potential therapeutic agent for cancer treatment.  相似文献   

9.
The 37-kDa/67-kDa laminin receptor precursor/laminin receptor (LRP/LR) acting as a receptor for prions and viruses is overexpressed in various cancer cell lines, and their metastatic potential correlates with LRP/LR levels. We analyzed the tumorigenic fibrosarcoma cell line HT1080 regarding 37-kDa/67-kDa LRP/LR levels and its invasive potential. Compared to the less invasive embryonic fibroblast cell line NIH3T3, the tumorigenic HT1080 cells display approximately 1.6-fold higher cell-surface levels of LRP/LR. We show that anti-LRP/LR tools interfere with the invasive potential of HT1080 cells. Anti-LRP/LR single-chain variable fragment antibody (scFv) iS18 generated by chain shuffling from parental scFv S18 and its full-length version immunoglobulin G1-iS18 reduced the invasive potential of HT1080 cells significantly by 37% and 38%, respectively. HT1080 cells transfected with lentiviral plasmids expressing small interfering RNAs directed against LRP mRNA showed reduced LRP levels by approximately 44%, concomitant with a significant decrease in the invasive potential by approximately 37%. The polysulfated glycans HM2602 and pentosan polysulfate (SP-54), both capable of blocking LRP/LR, reduced the invasive potential by 20% and 35%, respectively. Adhesion of HT1080 cells to laminin-1 was significantly impeded by scFv iS18 and immunoglobulin G1-iS18 by 60% and 68%, respectively, and by SP-54 and HM2602 by 80%, suggesting that the reduced invasive capacity achieved by these tools is due to the perturbation of the LRP/LR-laminin interaction on the cell surface. Our in vitro data suggest that reagents directed against LRP/LR or LRP mRNA such as antibodies, polysulfated glycans, or small interfering RNAs, previously shown to encompass an anti-prion activity by blocking or downregulating the prion receptor LRP/LR, might also be potential cancer therapeutics blocking metastasis by interfering with the LRP/LR-laminin interaction in neoplastic tissues.  相似文献   

10.
Metastasis is a major cause of death in cancer patients. Our previous studies showed that pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibited a potential cancer chemopreventive activity and also inhibited the growth of various human cancer cell lines via the regulation of cell cycle progression. In this study, we further evaluated the potential antimetastatic activity of pinosylvin in in vitro and in vivo models. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. We also found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems. In in vivo spontaneous pulmonary metastasis model employing intravenously injected CT26 mouse colon cancer cells in Balb/c mice, pinosylvin (10 mg/kg body weight, intraperitoneal administration) significantly inhibited the formation of tumor nodules and tumor weight in lung tissues. The analysis of tumor in lung tissues indicated that the antimetastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.  相似文献   

11.
Tumor cells can migrate in 3D matrices in either a mesenchymal-like or amoeboid mode. HT1080 fibrosarcoma cells cultured in 3D collagen gels change their morphology from mesenchymal-like (elongated) to amoeboid (round) following protease inhibitor (PI) treatment or active Rho or ROCK expression. In this study, we examined the role of LIM-kinase 1 (LIMK1) in the PI- or Rho/ROCK-induced cell morphological change. We showed that LIMK1 was activated after PI treatment of HT1080 cells in 3D collagen gels and this activation was blocked by a ROCK inhibitor. While overexpression of LIMK1 induced cell rounding, knockdown of LIMK1 or the expression of kinase-inactive LIMK1 suppressed PI- or Rho/ROCK-induced cell rounding. These results suggest that LIMK1 plays an essential role in the PI- or Rho/ROCK-induced mesenchymal-to-amoeboid cell morphological transition of HT1080 cells cultured in 3D collagen gels. Furthermore, LIMK1 knockdown suppressed the invasive activity of HT1080 cells in collagen gels with or without PIs, indicating that LIMK1 mediates both the mesenchymal and amoeboid modes of invasion of HT1080 cells.  相似文献   

12.
Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.  相似文献   

13.

Background

The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence linear information using digital signal processing methods. In this study the RRM concept was employed for structure-function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like antitumor/cytotoxic activity.

Methodology/Principal Findings

The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated. The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for the original viral protein.

Conclusions/Significance

Our findings indicate the successful application of the RRM concept to design a bioactive peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the rational design of therapeutic agents for future cancer treatment.  相似文献   

14.
Recently, we have shown that the farnesyltransferase inhibitor FTI-2153 induces accumulation of two human lung cancer cell lines in mitosis by inhibiting bipolar spindle formation during prometaphase. Here we investigate whether this mitotic arrest depends on transformation, Ras and/or p53 mutation status. Using DAPI staining (DNA) and immunocytochemistry (microtubules), we demonstrate that in normal primary foreskin fibroblasts (HFF), as well as in several cancer cell lines of different origins including human ovarian (OVCAR3), lung (A-549 and Calu-1) and fibrosarcoma (HT1080), FTI-2153 inhibits bipolar spindle formation and induces a rosette morphology with a monopolar spindle surrounded by chromosomes. In both malignant cancer cell lines and normal primary fibroblasts, the percentage of prometaphase cells with bipolar spindles decreases from 67-92% in control cells to 2-28% in FTI-2153 treated cells. This inhibition of bipolar spindle formation correlates with an accumulation of cells in prometaphase. The ability of FTI-2153 to inhibit bipolar spindle formation is not dependent on p53 mutation status since both wild-type (HFF, HT1080 and A-549) and mutant (Calu-1 and OVCAR3) p53 cells were equally affected. Similarly, both wild-type (HFF and OVCAR3) and mutant (HT1080, Calu-1 and A-549) Ras cells accumulate monopolar spindles following treatment with FTI-2153. However, two cell lines, NIH3T3 (WT Ras and WT p53) and the human bladder cancer cell line, T-24 (mutant H-Ras and mutant p53) are highly resistant to FTI-2153 inhibition of bipolar spindle formation. Finally, the ability of FTI-2153 to inhibit tumor cell proliferation does not correlate with inhibition of bipolar spindle formation. Taken together these results demonstrate that the ability of FTI-2153 to inhibit bipolar spindle formation and accumulate cells in mitosis is not dependent on transformation, Ras or p53 mutation status. Furthermore, in some cell lines, FTIs inhibit growth by mechanisms other than interfering with the prophase/metaphase traverse.  相似文献   

15.
The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.  相似文献   

16.

Melanoma is a cancer of melanocyte cells and has the highest global incidence. There is a need to develop new drugs for the treatment of this deadly cancer, which is resistant to currently used treatment modalities. We investigated the anticancer activity of visnagin, a natural furanochromone derivative, isolated from Ammi visnaga L., against malignant melanoma (HT 144) cell lines. The singlet oxygen production capacity of visnagin was determined by the RNO bleaching method while cytotoxic activity by the MTT assay. Further, HT 144 cells treated with visnagin were also exposed to visible light (λ ≥ 400 nm) for 25 min to examine the illumination cytotoxic activity. The apoptosis was measured by flow cytometry with annexin V/PI dual staining technique. The effect of TNF-α secretion on apoptosis was also investigated. In standard MTT assay, visnagin (100 µg/mL) exhibited 80.93% inhibitory activity against HT 144 cancer cell lines, while in illuminated MTT assay at same concentration it showed lesser inhibitory activity (63.19%). Visnagin was induced apoptosis due to the intracellular generation of reactive oxygen species (ROS) and showed an apoptotic effect against HT 144 cell lines by 25.88%. However, it has no effect on TNF-α secretion. Our study indicates that visnagin can inhibit the proliferation of malignant melanoma, apparently by inducing the intracellular oxidative stress.

  相似文献   

17.
To evaluate the antitumor and cytotoxic activity of methanol extract of Phyllanthus polyphyllus (MPP) in mice and human cancer cell lines, the antitumor activity of MPP was evaluated against an Ehrlich ascites carcinoma (EAC) tumor model. The activity was assessed using survival time, hematological studies, lipid peroxidation (LPO), antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST), solid tumor mass, and short-term in vitro cytotoxicity. The cytotoxic activity of MPP was evaluated using human breast cancer (MCF7), colon cancer (HT29), and liver cancer (HepG2) cell lines Oral administration of MPP (200 and 300 mg/kg) increased the survival time and significantly reduced the solid tumor volume in a dose-dependent manner. Hematological parameters, protein, and packed cellular volume (PCV), which were altered by tumor inoculation, were restored. MPP significantly decreased the levels of LPO, GPx, GST, and significantly increased the levels of SOD and CAT. In a cytotoxicity study against human cancer cell lines, MPP was found to have IC50 values of 27, 42 and 38 microg/ml on MCF-7, HT-29, and HepG2 cells respectively. MPP possessed significant antitumor and cytotoxic activity on EAC and human cancer cell lines.  相似文献   

18.
A new series of (sulfonamido)propanamides ( 6a1 – 6a13 , 6b1 – 6b15 , 7c1 – 7c5 , 6d1 – 6d5 , 6e1 – 6e6 ) was designed and synthesized. All the synthesized compounds were characterized by NMR and mass spectrometry. The target compounds were evaluated for their in vitro cytotoxic activity against hepatocellular carcinoma (HepG2), fibrosarcoma (HT‐1080), mouth epidermal carcinoma (KB), and breast adenocarcinoma (MCF‐7) cell lines with the sulforhodamine B (SRB) assay, with gemcitabine and mitomycin C as positive controls. Most of these compounds exhibit a more potent cytotoxic effect than the positive control group on various cancer cell lines and the most potent compound, 6a7 , shows the IC50 values of 29.78±0.516 μm , 30.70±0.61 μm , and 64.89±3.09 μm in HepG2, HT‐1080, KB, and MCF‐7 cell lines, respectively. Thus, these compounds with potent cytotoxic activity have potential for development as new chemotherapy agents.  相似文献   

19.
The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.  相似文献   

20.
Human SLFN5 inhibits invasions of IFNα-sensitive renal clear-cell carcinoma and melanoma cells. However, whether this inhibition is confined to these IFNα-sensitive cancers is unclear. Here we show that SLFN5 expressions on both mRNA and protein levels are significantly higher in non/low-invasive cancer cell lines (breast cancer cell line MCF7, colorectal cancer cell line HCT116 and lung cancer cell line A549) than in highly-invasive cancer cell lines (fibrosarcoma cell line HT1080 and renal clear cell cancer cell line 786-0). SLFN5 knockdown in non/low-invasive cancer cell lines enhanced MT1-MMP expression and increased migration and invasion in vitro, and in vivo. Furthermore, SLFN5 overexpression in HT1080 and 786-0 inhibited MT1-MMP expression and repressed migration and invasion. MT1-MMP is instrumental in SLFN5-controlled inhibition of cancer cell migration and invasion, as shown by MT1-MMP-knockdown and -overexpression analyses. SLFN5 knockdown activated AKT/GSK-3β/β-catenin pathway by promotion AKT phosphorylation and subsequent GSK-3β phosphorylation, further β-catenin translocation into nucleus as un-phosphorylated protein at Ser33, 37 and 45 and Thr41 sites. This is the first study to report that SLFN5 inhibits cancer migration and invasiveness in several common cancer cell lines by repressing MT1-MMP expression via the AKT/GSK-3β/β-catenin signalling pathway, suggesting that SLFN5 plays wide inhibitory roles in various cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号