首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although most eukaryotic genomes lack operons, occasionally clusters of genes are discovered that are related in function. Now, a metabolic operon-like gene cluster has been described in Arabidopsis thaliana, that is needed for triterpene synthesis.  相似文献   

2.
3.
类似于原核生物的操纵子,在真核生物(如酵母、真菌、昆虫等)基因组中也出现了彼此功能相关的非同源基因成簇存在的现象。这些基因形成基因簇,可参与多种次生代谢途径。近年来,植物中也发现了越来越多的参与次生代谢产物合成的基因簇,它们已成为植物生物学研究的热点。本文总结并分析了植物中已鉴定的次生代谢基因簇。这些基因簇存在于玉米(Zea mays L.)、水稻(Oryza sativa L.)、拟南芥(Arabidopsis thaliana(L.) Heynh.)、番茄(Solanum lycopersicum L.)等植物的基因组中,分别参与合成苯并噁唑嗪酮类、萜类和生物碱类等次生代谢产物。本文通过解析这些基因簇的组成及结构特点,对其特征进行总结,探讨了基因簇形成的分子机理及其调控机制,对植物次生代谢基因簇在合成生物学及代谢工程学中的研究方向和应用前景进行了展望。  相似文献   

4.
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.  相似文献   

5.
Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.  相似文献   

6.
7.
Wang J  Zhang Y  Shen X  Zhu J  Zhang L  Zou J  Guo Z 《Molecular bioSystems》2011,7(4):1158-1166
Finding candidate cancer genes playing causal roles in carcinogenesis is an important task in cancer research. The non-randomness of the co-mutation of genes in cancer samples can provide statistical evidence for these genes' involvement in carcinogenesis. It can also provide important information on the functional cooperation of gene mutations in cancer. However, due to the relatively small sample sizes used in current high-throughput somatic mutation screening studies and the extraordinary large-scale hypothesis tests, the statistical power of finding co-mutated gene pairs based on high-throughput somatic mutation data of cancer genomes is very low. Thus, we proposed a stratified FDR (False Discovery Rate) control approach, for identifying significantly co-mutated gene pairs according to the mutation frequency of genes. We then compared the identified co-mutated gene pairs separately by pre-selecting genes with higher mutation frequencies and by the stratified FDR control approach. Finally, we searched for pairs of pathways annotated with significantly more between-pathway co-mutated gene pairs to evaluate the functional roles of the identified co-mutated gene pairs. Based on two datasets of somatic mutations in cancer genomes, we demonstrated that, at a given FDR level, the power of finding co-mutated gene pairs could be increased by pre-selecting genes with higher mutation frequencies. However, many true co-mutation between genes with lower mutation rates will still be missed. By the stratified FDR control approach, many more co-mutated gene pairs could be found. Finally, the identified pathway pairs significantly overrepresented with between-pathway co-mutated gene pairs suggested that their co-dysregulations may play causal roles in carcinogenesis. The stratified FDR control strategy is efficient in identifying co-mutated gene pairs and the genes in the identified co-mutated gene pairs can be considered as candidate cancer genes because their non-random co-mutations in cancer genomes are highly unlikely to be attributable to chance.  相似文献   

8.
9.
10.
We introduce a tool for text mining, Dragon Plant Biology Explorer (DPBE) that integrates information on Arabidopsis (Arabidopsis thaliana) genes with their functions, based on gene ontologies and biochemical entity vocabularies, and presents the associations as interactive networks. The associations are based on (1) user-provided PubMed abstracts; (2) a list of Arabidopsis genes compiled by The Arabidopsis Information Resource; (3) user-defined combinations of four vocabulary lists based on the ones developed by the general, plant, and Arabidopsis GO consortia; and (4) three lists developed here based on metabolic pathways, enzymes, and metabolites derived from AraCyc, BRENDA, and other metabolism databases. We demonstrate how various combinations can be applied to fields of (1) gene function and gene interaction analyses, (2) plant development, (3) biochemistry and metabolism, and (4) pharmacology of bioactive compounds. Furthermore, we show the suitability of DPBE for systems approaches by integration with "omics" platform outputs. Using a list of abiotic stress-related genes identified by microarray experiments, we show how this tool can be used to rapidly build an information base on the previously reported relationships. This tool complements the existing biological resources for systems biology by identifying potentially novel associations using text analysis between cellular entities based on genome annotation terms. Thus, it allows researchers to efficiently summarize existing information for a group of genes or pathways, so as to make better informed choices for designing validation experiments. Last, DPBE can be helpful for beginning researchers and graduate students to summarize vast information in an unfamiliar area. DPBE is freely available for academic and nonprofit users at http://research.i2r.a-star.edu.sg/DRAGON/ME2/.  相似文献   

11.
12.
【目的】通过解析拟茎点霉属XP-8的基因组序列信息,揭示该菌株潜在的代谢途径,并分析松脂醇及其糖苷化合物等次级代谢产物生物合成相关的关键基因。【方法】使用Illumina Hi Seq 2500高通量测序平台对拟茎点霉XP-8菌株进行全基因组测序,并通过不同软件对测序数据进行序列拼接,基因预测与功能注释。【结果】组装后的拟茎点霉XP-8基因组大小为55.2 Mb,GC含量53.5%,含有17094个蛋白编码基因和310个非编码基因。获得了松脂醇及其糖苷化合物等次级代谢产物生物合成相关的基因。系统发育分析揭示出拟茎点霉XP-8与5种子囊菌共有12635个同源基因和5626个基因家族。【结论】拟茎点霉XP-8具有用于合成松脂醇及其糖苷化合物等多种次级代谢物的基因组基础,为下一步的代谢工程改造提供依据。  相似文献   

13.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.  相似文献   

14.
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page .Electronic Supplementary Material Supplementary material is available for this article at Dedicated to Prof. Dr. h.c. Gerhard Gottschalk on the occasion of his 70th birthday.  相似文献   

15.
16.
17.
18.
? A hallmark of the innate immune system of plants is the biosynthesis of low-molecular-weight compounds referred to as secondary metabolites. Tryptophan-derived branch pathways contribute to the capacity for chemical defense against microbes in Arabidopsis thaliana. ? Here, we investigated phylogenetic patterns of this metabolic pathway in relatives of A. thaliana following inoculation with filamentous fungal pathogens that employ contrasting infection strategies. ? The study revealed unexpected phylogenetic conservation of the pathogen-induced indole glucosinolate (IG) metabolic pathway, including a metabolic shift of IG biosynthesis to 4-methoxyindol-3-ylmethylglucosinolate and IG metabolization. By contrast, indole-3-carboxylic acid and camalexin biosyntheses are clade-specific innovations within this metabolic framework. A Capsella rubella accession was found to be devoid of any IG metabolites and to lack orthologs of two A. thaliana genes needed for 4-methoxyindol-3-ylmethylglucosinolate biosynthesis or hydrolysis. However, C. rubella was found to retain the capacity to deposit callose after treatment with the bacterial flagellin-derived epitope flg22 and pre-invasive resistance against a nonadapted powdery mildew fungus. ? We conclude that pathogen-inducible IG metabolism in the Brassicaceae is evolutionarily ancient, while other tryptophan-derived branch pathways represent relatively recent manifestations of a plant-pathogen arms race. Moreover, at least one Brassicaceae lineage appears to have evolved IG-independent defense signaling and/or output pathway(s).  相似文献   

19.
20.
Jia  Shu-Lei  Ma  Yan  Chi  Zhe  Liu  Guang-Lei  Hu  Zhong  Chi  Zhen-Ming 《Annals of microbiology》2019,69(13):1475-1488
Purpose

This study aimed to look insights into taxonomy, evolution, and biotechnological potentials of a yeast-like fungal strain P6 isolated from a mangrove ecosystem.

Methods

The genome sequencing for the yeast-like fungal strain P6 was conducted on a Hiseq sequencing platform, and the genomic characteristics and annotations were analyzed. The central metabolism and gluconate biosynthesis pathway were studied through the genome sequence data by using the GO, KOG, and KEGG databases. The secondary metabolite potentials were also evaluated.

Results

The whole genome size of the P6 strain was 25.41Mb and the G + C content of its genome was 50.69%. Totally, 6098 protein-coding genes and 264 non-coding RNA genes were predicted. The annotation results showed that the yeast-like fungal strain P6 had complete metabolic pathways of TCA cycle, EMP pathway, pentose phosphate pathway, glyoxylic acid cycle, and other central metabolic pathways. Furthermore, the inulinase activity associated with β-fructofuranosidase and high glucose oxidase activity in this strain have been demonstrated. It was found that this yeast-like fungal strain was located at root of most species of Aureobasidium spp. and at a separate cluster of all the phylogenetic trees. The P6 strain was predicted to contain three NRPS gene clusters, five type-I PKS gene clusters, and one type-I NRPS/PKS gene cluster via analysis at the antiSMASH Website. It may synthesize epichloenin A, fusaric acid, elsinochromes, and fusaridione A.

Conclusions

Based on its unique DNA sequence, taxonomic position in the phylogenetic tree and evolutional position, the yeast-like fungal strain P6 was identified as a novel species Aureobasidium hainanensis sp. nov. P6 isolate and had highly potential applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号