首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.  相似文献   

2.
Apicoplast, a nonphotosynthetic plastid derived from secondary symbiotic origin, is essential for the survival of malaria parasites of the genus Plasmodium. Elucidation of the evolution of the apicoplast genome in Plasmodium species is important to better understand the functions of the organelle. However, the complete apicoplast genome is available for only the most virulent human malaria parasite, Plasmodium falciparum. Here, we obtained the near-complete apicoplast genome sequences from eight Plasmodium species that infect a wide variety of vertebrate hosts and performed structural and phylogenetic analyses. We found that gene repertoire, gene arrangement, and other structural attributes were highly conserved. Phylogenetic reconstruction using 30 protein-coding genes of the apicoplast genome inferred, for the first time, a close relationship between P. ovale and rodent parasites. This close relatedness was robustly supported using multiple evolutionary assumptions and models. The finding suggests that an ancestral host switch occurred between rodent and human Plasmodium parasites.  相似文献   

3.
When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of S?o Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations.  相似文献   

4.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

5.
Parasite–host specialization is frequently considered to be a derived state such that it represents an 'evolutionary dead end' that strongly limits further evolution. In this study, it was tested whether this theory is applicable to the relationship of malaria parasites and their vertebrate hosts. For this, we revisited Perkins and Schall (2002) analysis of the phylogenetic relationships of the malaria parasites (belonging to the genera Plasmodium , Haemoproteus and Hepatocystis ) based on the mitochondrial Cytochrome b gene sequence, and inferred, using a maximum likelihood (ML) approach, the putative ancestral vertebrate hosts. As the topology in this study presents several unresolved branches and is slightly different from that of Perkins and Schall, a Shimodaira and Hasegawa (SH; 1999) test has been performed in order to properly consider several alternative topologies. The results of this study suggest that the common ancestor of all these malaria parasites was a reptile (more specific of the order Squamata), and that the host switches from Squamata to Aves and vice versa were quite frequent along the evolution of these parasites. On the contrary, a strong evidence that the host shift from Squamata to Mammalia had occurred only once during the evolution of these organisms was found. This evidence (added to the current knowledge about the association of the malaria parasites with their vertebrate hosts) allows us to suggest, at least considering the species included in this study, that the adaptation in mammals had required a high level of specialization. Hence, the acquisition of this host class had culminated in an evolutionary dead end for the mammalian malaria parasites.  相似文献   

6.
Many parasites show fidelity to a set of hosts in ecological time but not evolutionary time and the determinants of this pattern are poorly understood. Malarial parasites use vertebrate hosts for the asexual stage of their life cycle but use Dipteran hosts for the sexual stage. Despite the potential evolutionary importance of Dipteran hosts, little is known of their role in determining a parasite's access to vertebrate hosts. Here, we use an avian malarial system in Panama to explore whether mosquitoes act as an access filter that limits the range of vertebrate hosts used by particular parasite lineages. We amplified and sequenced Plasmodium mitochondrial DNA (mtDNA) from Turdus grayi (clay-coloured robin) and from mosquitoes at the same study site. We trapped and identified to species 123 141 female mosquitoes and completed polymerase chain reaction (PCR) screening for Plasmodium parasites in 435 pools of 20 mosquitoes per pool (8700 individuals total) spanning the 11 most common mosquito species. Our primers amplified nine Plasmodium lineages, whose sequences differed by 1.72%–10.0%. Phylogenetic analyses revealed partial clustering of lineages that co-occurred in mosquito hosts. However PAN3 and PAN6, the two primary parasite lineages of T. grayi , exhibited sequence divergence of 8.59% and did not cluster in the phylogeny. We detected these two lineages exclusively in mosquitoes from different genera — PAN3 was found only in Culex (Melanoconion) ocossa , and PAN6 was found only in Aedeomyia squamipennis . Furthermore, each of these two parasite lineages co-occurred in mosquitoes with other Plasmodium lineages that were not found in the vertebrate host T. grayi . Together, this evidence suggests that parasite–mosquito associations do not restrict the access of parasites to birds but instead may actually facilitate the switching of vertebrate hosts that occurs over evolutionary time.  相似文献   

7.
The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management.  相似文献   

8.
Garamszegi LZ  Avilés JM 《Oecologia》2005,143(1):167-177
Interspecific brood parasites may use the secondary sexual characters of the hosts to decide which species to parasitize. Hence, species with conspicuous and well-recognisable traits may have higher chances of becoming parasitised. Using North American birds and their frequent brood parasite, the brown-headed cowbird Molothrus ater, we tested the relationship between features of song and plumage coloration of hosts and the frequency of brood parasitism while controlling for several potentially confounding factors. Relying on two sets of analysis, we focused separately on the evolutionary view of the parasite and the host. From the cowbirds perspective, we found that males of heavily parasitized species posit songs with low syllable repertoire size, shorter inter-song interval and have brighter plumage. From the hosts perspective, a phylogenetic analysis revealed similar associations for features of song, but not for plumage characteristics that were unrelated to brood parasitism. These comparative findings may imply that brood parasites choose novel hosts based on heterospecific signals; and/or host species working against sexual selection escape from brood parasitism by evolving inconspicuous sexual signals. Although our data do not allow us to distinguish between these two evolutionary scenarios, our results suggest that selection factors mediating cowbird parasitism via host recognition by heterospecific signals may have an important role in the evolutionary relationship between brood parasites and their hosts.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
Malaria and other haemosporin parasites must undergo a round of sexual reproduction in their insect vector in order to produce stages that can be transmitted to vertebrate hosts. Consequently, it is crucial that parasites produce the sex ratio (proportion of male sexual stages) that will maximize the number of fertilization and thus, transmission to new vertebrate hosts. There is some evidence to show that, consistent with evolutionary theory, the sex ratios of malaria parasites are negatively correlated to their inbreeding rate. However, recent theory has shown that when fertilization success is compromised, parasites should respond by increasing their investment in sexual stages or by producing a less female biased ration than predicted by their inbreeding rate alone. Here, we show that two species of rodent malaria, Plasmodium chabaudi and Plasmodium vinckei petteri, adopt different strategies in response to host anaemia, a factor though to compromise transmission success: P. chabaudi increases investment in sexual stages, whereas P. vinckei produces a less female biased sex ratio. We suggest that these different transmission strategies may be due to marked differences in host cell preference.  相似文献   

10.
Plasmodium falciparum and Toxoplasma gondii are obligate intracellular apicomplexan parasites that rapidly invade and extensively modify host cells. Protein phosphorylation is one mechanism by which these parasites can control such processes. Here we present a phosphoproteome analysis of peptides enriched from schizont stage P. falciparum and T. gondii tachyzoites that are either "intracellular" or purified away from host material. Using liquid chromatography-tandem mass spectrometry, we identified over 5,000 and 10,000 previously unknown phosphorylation sites in P. falciparum and T. gondii, respectively, revealing that protein phosphorylation is an extensively used regulation mechanism both within and beyond parasite boundaries. Unexpectedly, both parasites have phosphorylated tyrosines, and P. falciparum has unusual phosphorylation motifs that are apparently shaped by its A:T-rich genome. This data set provides important information on the role of phosphorylation in the host-pathogen interaction and clues to the evolutionary forces operating on protein phosphorylation motifs in both parasites.  相似文献   

11.
As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts.  相似文献   

12.
Bird populations often have high prevalences of the haemosporidians Haemoproteus spp. and Plasmodium spp., but the extent of host sharing and host switching among these parasite lineages and their avian hosts is not well known. While sampling within a small geographic region in which host individuals are likely to have been exposed to the same potential parasite lineages, we surveyed highly variable mitochondrial DNA from haemosporidians isolated from 14 host taxa representing 4 avian families (Hirundinidae, Parulidae, Emberizidae, and Fringillidae). Analyses of cytochrome b sequences from 83 independent infections identified 29 unique haplotypes, representing 2 well-differentiated Haemoproteus spp. lineages and 6 differentiated Plasmodium spp. lineages. A phylogenetic reconstruction of relationships among these lineages provided evidence against host specificity at the species and family levels, as all haemosporidian lineages recovered from 2 or more host individuals (2 Haemoproteus and 3 Plasmodium lineages) were found in at least 2 host families. We detected a similar high level of host sharing; the 3 most intensively sampled host species each harbored 4 highly differentiated haemosporidian lineages. These results indicate that some Haemoproteus spp. and Plasmodium spp. lineages exhibit a low degree of host specificity, a phenomenon with implications for ecological and evolutionary interactions among these parasites and their hosts.  相似文献   

13.
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free‐living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well‐sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species.  相似文献   

14.
Ecological fitting refers to interspecific associations characterized by ecologically specialized, yet phylogenetically conservative, resource utilization. During periods of biotic expansion, parasites and hosts may disperse from their areas of origin. In conjunction with ecological fitting, this sets the stage for host switching without evolving novel host utilization capabilities. This is the evolutionary basis of emerging infectious diseases (EIDs). Phylogenetic analysis for comparing trees (PACT) is a method developed to delineate both general and unique historically reticulated and non‐reticulated relationships among species and geographical areas, or among parasites and their hosts. PACT is based on ‘Assumption 0’, which states that all species and all hosts in each input phylogeny must be analysed without modification, and the final analysis must be logically consistent with all input data. Assumption 0 will be violated whenever a host or area has a reticulated history with respect to its parasites or species. PACT includes a Duplication Rule, by which hosts or areas are listed for each co‐evolutionary or biogeographical event affecting them, which satisfies Assumption 0 even if there are reticulations. PACT maximizes the search for general patterns by using Ockam's Razor – duplicate only enough to satisfy Assumption 0. PACT applied to the host and geographical distributions of members of two groups of parasitic helminths infecting anthropoid primates indicates a long and continuous association with those hosts. Nonetheless, c. 30% of the host associations are due to host switching. Only one of those involves non‐primate hosts, suggesting that most were constrained by resource requirements that are phylogenetically conservative among primates (ecological fitting). In addition, most of the host switches were associated with episodes of biotic expansion, also as predicted by the ecological fitting view of EIDs.  相似文献   

15.
Secretion of proteins into host cells by Apicomplexan parasites   总被引:1,自引:0,他引:1  
The phylum Apicomplexa consists of a diverse group of obligate, intracellular parasites. The distinct evolutionary pressures on these protozoans as they have adapted to their respective niches have resulted in a variety of methods that they use to interact with and modify their hosts. One of these is the secretion and trafficking of parasite proteins into the host cell. We review this process for Theileria , Toxoplasma and Plasmodium . We also present what is known about the mechanisms by which parasite proteins are exported into the host cell, as well as information on their known and putative functions once they have reached their final destination.  相似文献   

16.
B chromosomes are dispensable elements that do not recombine with the A chromosomes of the regular complement and that follow their own evolutionary track. In some cases, they are known to be nuclear parasites with autonomous modes of inheritance, exploiting "drive" to ensure their survival in populations. Their "selfishness" brings them into conflict with their host nuclear genome and generates a host-parasite relationship, with anti-B-chromosome genes working to ameliorate the worst of their excesses in depriving their hosts of genetic resources. Molecular studies are homing in on their sequence organization to give us an insight into the origin and evolution of these enigmatic chromosomes, which are, with rare exceptions, without active genes.  相似文献   

17.
Parasites are known to manipulate the behavior of their hosts in ways that increase their probability of transmission. Theoretically, different evolutionary routes can lead to host manipulation, but much research has concentrated on the ‘manipulation hypothesis’ sensu stricto. Among the arsenal of host compensatory responses, however, some seem to be compatible with the parasite objectives. Another way for parasites to achieve transmission, therefore, would be to trigger specific host compensatory responses. In order to explore the conditions favoring this manipulative strategy, we developed a simulation model in which parasites may affect their hosts' behavior by using two nonmutually exclusive strategies: a manipulation sensu stricto strategy and a strategy based on the exploitation of host compensatory responses. Our model predicts that the exploitation of host compensatory responses can be evolutionary stable when the alteration improves the susceptibility to predation by final hosts without compromising host survival during parasite development. Inversely, when the behavioral modification resulting from a compensatory response conflicts with the host's interest we expect parasites to use both strategies. From this result, we conclude that the strategy based on the exploitation of host compensatory responses should be more common among nontrophically transmitted parasites. Furthermore, our findings indicate that the transmission rate of parasites in a definitive host is highest when each of the two strategies affects different traits, which supports the hypothesis that host manipulation is a multidimensional phenomenon in which each altered trait contributes independently to increase parasite transmission efficiency.  相似文献   

18.
Statistical correlations of biodiversity patterns across multiple trophic levels have received considerable attention in various types of interacting assemblages, forging a universal understanding of patterns and processes in free‐living communities. Host–parasite interactions present an ideal model system for studying congruence of species richness among taxa as obligate parasites are strongly dependent upon the availability of their hosts for survival and reproduction while also having a tight coevolutionary relationship with their hosts. The present meta‐analysis examined 38 case studies on the relationship between species richness of hosts and parasites, and is the first attempt to provide insights into the patterns and causal mechanisms of parasite biodiversity at the community level using meta‐regression models. We tested the distinct role of resource (i.e. host) availability and evolutionary co‐variation on the association between biodiversity of hosts and parasites, while spatial scale of studies was expected to influence the extent of this association. Our results demonstrate that species richness of parasites is tightly correlated with that of their hosts with a strong average effect size (r= 0.55) through both host availability and evolutionary co‐variation. However, we found no effect of the spatial scale of studies, nor of any of the other predictor variables considered, on the correlation. Our findings highlight the tight ecological and evolutionary association between host and parasite species richness and reinforce the fact that host–parasite interactions provide an ideal system to explore congruence of biodiversity patterns across multiple trophic levels.  相似文献   

19.
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite–host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free‐living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite–host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism‐induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re‐examination, display traits which are just as (if not more) likely to be found in free‐living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history.  相似文献   

20.
A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号