首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

2.
Benthic invertebrates, litter decomposition, andlitterbag invertebrates were examined in streamsdraining pine monoculture and undisturbed hardwoodcatchments at the Coweeta Hydrologic Laboratory in thesouthern Appalachian Mountains, USA. Bimonthlybenthic samples were collected from a stream draininga pine catchment at Coweeta during 1992, and comparedto previously collected (1989–1990) benthic data froma stream draining an adjacent hardwood catchment. Litter decomposition and litterbag invertebrates wereexamined by placing litterbags filled with pine ormaple litter in streams draining pine catchments andhardwood catchments during 1992–1993 and 1993–1994. Total benthic invertebrate abundance and biomass inthe pine stream was ca. 57% and 74% that of thehardwood stream, respectively. Shredder biomass wasalso lower in the pine stream but, as a result ofhigher Leuctra spp. abundance, shredderabundance was higher in the pine stream than thehardwood stream. Decomposition rates of both pine andred maple litter were significantly faster in pinestreams than adjacent hardwood streams (p<0.05). Total shredder abundance, biomass, and production weresimilar in maple bags from pine and hardwood streams. However, trichopteran shredder abundance and biomass,and production of some trichopteran taxa such asLepidostoma spp., were significantly higher in maplelitterbags from pine streams than hardwood streams(p<0.05). In contrast, plecopteran shredders(mainly Tallaperla sp.) were more important inmaple litterbags from hardwood streams. Shredderswere well represented in pine litterbags from pinestreams, but low shredder values were obtained frompine litterbags in hardwood streams. Resultssuggest conversion of hardwood forest to pinemonoculture influences taxonomic composition of streaminvertebrates and litter decomposition dynamics. Although the impact of this landscape-leveldisturbance on invertebrate shredder communitiesappeared somewhat subtle, significant differences indecomposition dynamics indicate vital ecosystem-levelprocesses are altered in streams draining pinecatchments.  相似文献   

3.
采用复合网袋法,研究了冬季南京紫金山三角枫落叶在无干扰溪流和生态恢复溪流中的分解过程.结果表明:112 d后,三角枫落叶无灰干质量剩余率为31%~62%,分解速率符合指数衰减模型(P<0.05).在生态恢复溪流和无干扰溪流的流水生境中, 三角枫落叶的分解速率分别为0.0030 d-1和0.0064 d-1,静水生境中分别为0.0018 d-1和0.0016 d-1.流水生境中,无干扰溪流网袋内的大型底栖动物多度和生物量显著高于恢复溪流(P<0.05),而静水中无显著差异(P>0.05).无干扰溪流中的撕食者多度比例最高(70.4%),以栉水虱为主;生态恢复溪流中滤食者的多度比例最高(37.8%),以长跗摇蚊属为主.流水生境中三角枫落叶的分解速率与撕食者物种丰富度和多度相关性显著(P<0.01),而与生物量的相关性不显著(P>0.05).说明冬季溪流中撕食者的物种丰富度和多度决定三角枫落叶的分解速率.  相似文献   

4.
5.
6.
Many studies across a range of ecosystems have shown that decomposition in mixed litter is not predictable from single-species results due to synergistic or antagonistic interactions. Some studies also reveal that species composition and relative abundance may be more important than just richness in driving non-additive effects. Most studies on litter decomposition in Mediterranean maquis, an high-diversity shrubby ecosystem, have dealt exclusively with single species. In this study we investigated, at the individual-litter level, as well as at the litter-mixture level, the effect of litter mixing on decomposition of 3-species litter assemblages with different relative abundance of the component litters; we set up two types of litter assemblages that reflected the heterogeneity of bush cover in the inner maquis and at the edge maquis/gaps, as related to the leaf traits, i.e. sclerophylly vs mesophylly. We measured mass loss, decay of lignin, cellulose and ADSS (acid detergent soluble substances) and fungal mycelium ingrowth. The results show that over a 403-day incubation period, the decomposition of individual litters in mixtures deviated from that of monospecific litters and had different directions. In litter mixtures of the sclerophylls Phillyrea angustifolia and Pistacea lentiscus with the mesophyll Cistus, decomposition was lower than expected (antagonistic effect); in the mixtures of litters with similar physical structure (Ph. angustifolia and P. lentiscus with Quercus ilex) decomposition was faster than expected (synergistic effect). When considering the different decomposition phases, both negative and positive effects occurred in Quercus mixtures depending on the phase of decomposition. In both types of 3-species litter assemblages the greatest effect occurred in uneven mixtures rather than in even mixtures. Our results show that species composition drives the direction whilst the decomposability and the relative abundance drive the magnitude of non-additive effects of litter mixing on decomposition.  相似文献   

7.
8.
1. Phyllosphere interactions are known to influence a variety of tree canopy community members, but less frequently have they been shown to affect processes across ecosystem boundaries. Here, we show that a fungal endophyte (Rhytisma punctatum) slows leaf litter decomposition of a dominant riparian tree species (Acer macrophyllum) in an adjacent stream ecosystem. 2. Patches of leaf tissue infected by R. punctatum show significantly slower decomposition compared to both nearby uninfected tissue from the same leaf, and completely uninfected leaves. These reduced rates of decomposition existed despite 50% greater nitrogen in infected tissues and may be driven by slower rates of decomposition for fungal tissues themselves or by endophyte–hyphomycete interactions. 3. Across a temperate forest in the Pacific Northwest, approximately 72% of all A. macrophyllum leaves were infected by R. punctatum. Since R. punctatum infection can influence leaf tissue on entire trees and large quantities of leaf litter at the landscape scale, this infection could potentially result in a mosaic of ‘cold spots’ of litter decomposition and altered nutrient cycling in riparian zones where this infection is prevalent.  相似文献   

9.
10.
1. To assess the impact of metal mixtures on microbial decomposition of leaf litter, we exposed leaves previously immersed in a stream to environmentally realistic concentrations of copper (Cu) and zinc (Zn) (three levels), alone and in all possible combinations. The response of the microbial community was monitored after 10, 25 and 40 days of metal exposure by examining leaf mass loss, fungal and bacterial biomass, fungal reproduction and fungal and bacterial diversity.
2. Analysis of microbial diversity, assessed by denaturing gradient gel electrophoresis and identification of fungal spores, indicated that metal exposure altered the structure of fungal and bacterial communities on decomposing leaves.
3. Exposure to metal mixtures or to the highest Cu concentration significantly reduced leaf decomposition rates and fungal reproduction, but not fungal biomass. Bacterial biomass was strongly inhibited by all metal treatments.
4. The effects of Cu and Zn mixtures on microbial decomposition of leaf litter were mostly additive, because observed effects did not differ from those expected as the sum of single metal effects. However, antagonistic effects on bacterial biomass were found in all metal combinations and on fungal reproduction in metal combinations with the highest Cu concentrations, particularly at longer exposure times.  相似文献   

11.
Effects of flooding on leaf litter decomposition in microcosms   总被引:3,自引:0,他引:3  
Frank P. Day Jr. 《Oecologia》1983,56(2-3):180-184
Summary The effects of hydroperiod on decomposition rates of senescent Acer rubrum leaves were tested in microcosms in a controlled laboratory environment. Microcosm treatments included continuously flooded, continuously unflooded, and fluctuating hydroperiods. All flooding treatments promoted decomposition but variations in hydroperiod had no significant effects. A leaching experiment indicated the higher decay rates under flooded conditions were primarily due to high leaching losses from soaking. Unlike nutrient dynamics in the field, where net accumulation occurs, nitrogen and phosphorus in the litter in the microcosms exhibited net losses. The major external inputs which provide a source of nitrogen and phosphorus for immobilization in the field were lacking in the microcosms. Calcium, magnesium, and potassium exhibited net losses except for calcium in the unflooded microcosms. The microcosm results demonstrated the importance of external inputs to litter nutrient relations.  相似文献   

12.
Different types of litter patches with contrasting macroinvertebrate assemblages have been observed within a stream reach. This study examined whether distributions of macroinvertebrates among three litter patch types (riffle, middle, edge) were consistent between reaches with different channel characteristics in headwater streams in central Japan. Mass of leaves per unit area was significantly higher in riffle and edge patches than in middle patches, which was consistent between reaches, while no consistent pattern was evident between reaches for mass of either woody material or small litter fragments. Distribution among the patch types was consistent between reaches for 11 out of 13 dominant macroinvertebrate taxa; density was highest in riffle patches for 5 taxa and in middle patches for 5 taxa. Although we previously related densities of some taxa to mass of woody material or small litter fragments, hydraulic characteristics (water depth, current velocity), which were consistent between reaches, may be more important determinants of macroinvertebrate distributions among the patch types, even within pools (i.e. middle and edge patches) where current is uniformly low. The results of this study indicate that a reach-scale macroinvertebrate community structure associated with litter is likely to vary according to litter patch type composition, which would be affected by channel characteristics of the reaches.  相似文献   

13.
14.
Hydrobiologia - Leaf litter decomposition is a key process in stream ecosystems, the rates of which can vary with changes in litter quality or its colonization by microorganisms. Decomposition in...  相似文献   

15.
Most studies of terrestrial litter decomposition in streams and rivers have used leaves from a single tree species, but leaf packs in streams in eastern North America are usually mixtures of two or more species. Litter mixtures may decay more quickly than either of the component species. If so, estimates of stream energy and nutrient budgets may be inaccurate. In northern Nova Scotia, Canada, we measured mass loss from binary mixtures (1:1 mass ratio) of leaf litter in mesh bags, using freshly fallen or air-dried litter from five species of canopy trees. We repeated the experiment eight times, in summer and fall, in two streams and a small river, over 3 years. In some trials we enumerated benthic invertebrate and fungal colonization of decaying litter. Although there were marked differences in mass loss rates among litter types, decomposition was accelerated in mixtures relative to the mean of the component species in only three of eight trials, and only in mixtures containing N-rich speckled alder leaves. Mixing yellow birch and red maple leaves inhibited decomposition. Diversity (Shannon–Weaver Index), species richness, and abundance of aquatic hyphomycete fungi, as indexed by conidial production, were never greater (and sometimes less) on litter mixtures than on the component species. Total numbers, taxonomic richness and diversity of benthic invertebrates generally, and litter-feeding species in particular, were not augmented by mixing litter types. Litter mixtures appear to dilute a preferred substrate with patches of a less preferred substrate. Our results provide only weak support for the contention that combining two litter types leads to acceleration of decomposition rates. Handling editor: K. Martens  相似文献   

16.
The leaf litter environment (single species versus mixed species), and interactions between litter diversity and macrofauna are thought to be important in influencing decomposition rates. However, the role of soil macrofauna in the breakdown of different species of leaf litter is poorly understood. In this study we examine the multiple biotic controls of decomposition – litter quality, soil macrofauna and litter environment and their interactions. The influence of soil macrofauna and litter environment on the decomposition of six deciduous tree species (Fraxinus excelsior L., Acer pseudoplatanus L., Acer campestre L., Corylus avellana L., Quercus robur L., Fagus sylvatica L.) was investigated in a temperate forest, Wytham Woods, Southern England. We used litterbags that selectively excluded macrofauna to assess the relative importance of macrofauna versus microbial, micro and mesofauna decomposition, and placed single species bags in either conspecific single species or mixed species litter environments. The study was designed to separate plant species composition effects on litter decomposition rates, allowing us to evaluate whether mixed species litter environments affect decomposition rates compared to single species litter environments, and if so whether the effects vary among litter species, over time, and with regard to the presence of soil macrofauna. All species had faster rates of decomposition when macrofauna were present, with 22–41% of the total mass loss attributed to macrofauna. Macrofauna were most important for easily decomposable species as soon as the leaves were placed on the ground, but were most important for recalcitrant species after nine months in the field. The mass loss rates did not differ between mixed and single species litter environments, indicating that observed differences between single species and mixed species litterbags in previous field studies are due to the direct contact of neighbouring species inside the litterbag rather than the litter environment in which they are placed.  相似文献   

17.
18.
根系在凋落物层生长对凋落叶分解及酶活性的影响   总被引:1,自引:0,他引:1  
根系向凋落物层生长是森林生态系统存在的普遍现象,研究根系存在对凋落物分解的影响对理解森林生态系统的养分物质循环具有重要意义.在福建三明市楠木和格氏栲林进行1年的凋落叶分解试验,设置有根处理和无根处理(对照),研究根系生长对凋落叶分解速率、养分释放和酶活性的影响.结果表明:在分解360 d后,有根处理楠木和格氏栲凋落叶干...  相似文献   

19.
以米槠(Castanopsis carlesii)凋落叶为研究对象,于2021年4—7月,对照森林地表和持续流水的溪流,研究间歇性溪流凋落叶分解过程中胞外酶活性变化规律。结果表明:(1)间歇性溪流凋落叶分解过程中酸性磷酸酶、β-葡萄糖苷酶、β-N-乙酰氨基葡萄糖苷酶和脲酶活性总体高于地表,低于溪流。(2)通过分析胞外酶化学计量比和矢量特征,发现三种生境凋落叶分解过程中微生物群落受碳和磷的共同限制。分解初期,间歇性溪流凋落叶分解过程中微生物群落相对碳限制程度高于其他两个生境,但相对磷限制低于地表,高于溪流;随着分解的进行,间歇性溪流凋落叶分解过程中微生物群落相对磷限制程度逐渐减弱,相对碳限制程度逐渐加强。(3)统计分析表明,间歇性溪流中大气温度是凋落叶分解过程中胞外酶活性的主控因子,而地表凋落叶分解过程中胞外酶活性与大气温度、地表温度和土壤含水量关系更为密切,溪流凋落叶分解过程中胞外酶活性主要受水体温度、溪流深度和气温等因子的影响。研究结果为全面认识亚热带森林生态系统物质迁移与循环过程提供了新思路和科学依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号