首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been a continuing interest in approaches that analyze pairwise locus-by-locus (epistasis) interactions using multilocus association models in genome-wide data sets. In this paper, we suggest an approach that uses sure independence screening to first lower the dimension of the problem by considering the marginal importance of each interaction term within the huge loop. Subsequent multilocus association steps are executed using an extended Bayesian least absolute shrinkage and selection operator (LASSO) model and fast generalized expectation-maximization estimation algorithms. The potential of this approach is illustrated and compared with PLINK software using data examples where phenotypes have been simulated conditionally on marker data from the Quantitative Trait Loci Mapping and Marker Assisted Selection (QTLMAS) Workshop 2008 and real pig data sets.  相似文献   

2.
In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account.  相似文献   

3.
A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance–covariance parameters in hierarchically structured data. Although hierarchical models have occasionally been used in the analysis of ecological data, their full potential to describe scales of association, diagnose variance explained, and to partition uncertainty has not been employed. In this paper we argue that the use of the HLM framework can enable significantly improved inference about ecological processes across levels of organization. After briefly describing the principals behind HLM, we give two examples that demonstrate a protocol for building hierarchical models and answering questions about the relationships between variables at multiple scales. The first example employs maximum likelihood methods to construct a two-level linear model predicting herbivore damage to a perennial plant at the individual- and patch-scale; the second example uses Bayesian estimation techniques to develop a three-level logistic model of plant flowering probability across individual plants, microsites and populations. HLM model development and diagnostics illustrate the importance of incorporating scale when modelling associations in ecological systems and offer a sophisticated yet accessible method for studies of populations, communities and ecosystems. We suggest that a greater coupling of hierarchical study designs and hierarchical analysis will yield significant insights on how ecological processes operate across scales.  相似文献   

4.
Estimating species trees using multiple-allele DNA sequence data   总被引:3,自引:0,他引:3  
Several techniques, such as concatenation and consensus methods, are available for combining data from multiple loci to produce a single statement of phylogenetic relationships. However, when multiple alleles are sampled from individual species, it becomes more challenging to estimate relationships at the level of species, either because concatenation becomes inappropriate due to conflicts among individual gene trees, or because the species from which multiple alleles have been sampled may not form monophyletic groups in the estimated tree. We propose a Bayesian hierarchical model to reconstruct species trees from multiple-allele, multilocus sequence data, building on a recently proposed method for estimating species trees from single allele multilocus data. A two-step Markov Chain Monte Carlo (MCMC) algorithm is adopted to estimate the posterior distribution of the species tree. The model is applied to estimate the posterior distribution of species trees for two multiple-allele datasets--yeast (Saccharomyces) and birds (Manacus-manakins). The estimates of the species trees using our method are consistent with those inferred from other methods and genetic markers, but in contrast to other species tree methods, it provides credible regions for the species tree. The Bayesian approach described here provides a powerful framework for statistical testing and integration of population genetics and phylogenetics.  相似文献   

5.
ABSTRACT: BACKGROUND: Estimates of relationships among Staphylococcus species have been hampered by poor and inconsistent resolution of phylogenies based largely on single gene analyses incorporating only a limited taxon sample. As such, the evolutionary relationships and hierarchical classification schemes among species have not been confidently established. Here, we address these points through analyses of DNA sequence data from multiple loci (16S rRNA gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa. RESULTS: We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model Bayesian and maximum likelihood analysis, as well as Bayesian gene-tree species-tree methods. Regardless of methodology, we found broad agreement among methods that the current cluster groups require revision, although there was some disagreement among methods in resolution of higher order relationships. Based on our phylogenetic estimates, we propose a refined classification for Staphylococcus with species being classified into 15 cluster groups (based on molecular data) that adhere to six species groups (based on phenotypic properties) CONCLUSIONS: Our findings are in general agreement with gene tree-based reports of the staphylococcal phylogeny, although we identify multiple previously unreported relationships among species. Our results support the general importance of such multilocus assessments as a standard in microbial studies to more robustly infer relationships among recognized and newly discovered.  相似文献   

6.
Phylogeny estimation is extremely crucial in the study of molecular evolution. The increase in the amount of available genomic data facilitates phylogeny estimation from multilocus sequence data. Although maximum likelihood and Bayesian methods are available for phylogeny reconstruction using multilocus sequence data, these methods require heavy computation, and their application is limited to the analysis of a moderate number of genes and taxa. Distance matrix methods present suitable alternatives for analyzing huge amounts of sequence data. However, the manner in which distance methods can be applied to multilocus sequence data remains unknown. Here, we suggest new procedures to estimate molecular phylogeny using multilocus sequence data and evaluate its significance in the framework of the distance method. We found that concatenation of the multilocus sequence data may result in incorrect phylogeny estimation with an extremely high bootstrap probability (BP), which is due to incorrect estimation of the distances and intentional ignorance of the intergene variations. Therefore, we suggest that the distance matrices for multilocus sequence data be estimated separately and these matrices be subsequently combined to reconstruct phylogeny instead of phylogeny reconstruction using concatenated sequence data. To calculate the BPs of the reconstructed phylogeny, we suggest that 2-stage bootstrap procedures be adopted; in this, genes are resampled followed by resampling of the sequence columns within the resampled genes. By resampling the genes during calculation of BPs, intergene variations are properly considered. Via simulation studies and empirical data analysis, we demonstrate that our 2-stage bootstrap procedures are more suitable than the conventional bootstrap procedure that is adopted after sequence concatenation.  相似文献   

7.

Background  

Inference of population stratification and individual admixture from genetic markers is an integrative part of a study in diverse situations, such as association mapping and evolutionary studies. Bayesian methods have been proposed for population stratification and admixture inference using multilocus genotypes and widely used in practice. However, these Bayesian methods demand intensive computation resources and may run into convergence problem in Markov Chain Monte Carlo based posterior samplings.  相似文献   

8.
9.

Background

Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia.

Methodology/Principal Findings

We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects.

Conclusions/Significance

A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control.  相似文献   

10.
In a typical case-control study, exposure information is collected at a single time point for the cases and controls. However, case-control studies are often embedded in existing cohort studies containing a wealth of longitudinal exposure history about the participants. Recent medical studies have indicated that incorporating past exposure history, or a constructed summary measure of cumulative exposure derived from the past exposure history, when available, may lead to more precise and clinically meaningful estimates of the disease risk. In this article, we propose a flexible Bayesian semiparametric approach to model the longitudinal exposure profiles of the cases and controls and then use measures of cumulative exposure based on a weighted integral of this trajectory in the final disease risk model. The estimation is done via a joint likelihood. In the construction of the cumulative exposure summary, we introduce an influence function, a smooth function of time to characterize the association pattern of the exposure profile on the disease status with different time windows potentially having differential influence/weights. This enables us to analyze how the present disease status of a subject is influenced by his/her past exposure history conditional on the current ones. The joint likelihood formulation allows us to properly account for uncertainties associated with both stages of the estimation process in an integrated manner. Analysis is carried out in a hierarchical Bayesian framework using reversible jump Markov chain Monte Carlo algorithms. The proposed methodology is motivated by, and applied to a case-control study of prostate cancer where longitudinal biomarker information is available for the cases and controls.  相似文献   

11.
Toadlets of the genus Brachycephalus are endemic to the Atlantic rainforests of southeastern and southern Brazil. The 14 species currently described have snout-vent lengths less than 18 mm and are thought to have evolved through miniaturization: an evolutionary process leading to an extremely small adult body size. Here, we present the first comprehensive phylogenetic analysis for Brachycephalus, using a multilocus approach based on two nuclear (Rag-1 and Tyr) and three mitochondrial (Cyt b, 12S, and 16S rRNA) gene regions. Phylogenetic relationships were inferred using a partitioned Bayesian analysis of concatenated sequences and the hierarchical Bayesian method (BEST) that estimates species trees based on the multispecies coalescent model. Individual gene trees showed conflict and also varied in resolution. With the exception of the mitochondrial gene tree, no gene tree was completely resolved. The concatenated gene tree was completely resolved and is identical in topology and degree of statistical support to the individual mtDNA gene tree. On the other hand, the BEST species tree showed reduced significant node support relative to the concatenate tree and recovered a basal trichotomy, although some bipartitions were significantly supported at the tips of the species tree. Comparison of the log likelihoods for the concatenated and BEST trees suggests that the method implemented in BEST explains the multilocus data for Brachycephalus better than the Bayesian analysis of concatenated data. Landmark-based geometric morphometrics revealed marked variation in cranial shape between the species of Brachycephalus. In addition, a statistically significant association was demonstrated between variation in cranial shape and genetic distances estimated from the mtDNA and nuclear loci. Notably, B. ephippium and B. garbeana that are predicted to be sister-species in the individual and concatenated gene trees and the BEST species tree share an evolutionary novelty, the hyperossified dorsal plate.  相似文献   

12.
We present a novel approach to investigating the divergence history of biomes and their component species using single-locus data prior to investing in multilocus data. We use coalescent-based hierarchical approximate Bayesian computation (HABC) methods (MsBayes) to estimate the number and timing of discrete divergences across a putative barrier and to assign species to their appropriate period of co-divergence. We then apply a coalescent-based full Bayesian model of divergence (IMa) to suites of species shown to have simultaneously diverged. The full Bayesian model results in reduced credibility intervals around divergence times and allows other parameters associated with divergence to be summarized across species assemblages. We apply this approach to 10 bird species that are wholly or patchily discontinuous in semi-arid habitats between Australia's southwest (SW) and southeast (SE) mesic zones. There was substantial support for up to three discrete periods of divergence. HABC indicates that two species wholly restricted to more mesic habitats diverged earliest, between 594,382 and 3,417,699 years ago, three species from semi-arid habitats diverged between 0 and 1,508,049 years ago, and four diverged more recently, between 0 and 396,843 years ago. Eight species were assigned to three periods of co-divergence with confidence. For full Bayesian analyses, we accounted for uncertainty in the two remaining species by analyzing all possible suites of species. Estimates of divergence times from full Bayesian divergence models ranged between 429,105 and 2,006,355; 67,172 and 663,837; and 24,607 and 171,085 for the earliest, middle, and most recent periods of co-divergence, respectively. This single-locus approach uses the power of multitaxa coalescent analyses as an efficient means of generating a foundation for further, targeted research using multilocus and genomic tools applied to an understudied biome.  相似文献   

13.
Several penalization approaches have been developed to identify homogeneous subgroups based on a regression model with subject-specific intercepts in subgroup analysis. These methods often apply concave penalty functions to pairwise comparisons of the intercepts, such that the subjects with similar intercept values are assigned to the same group, which is very similar to the procedure of the penalization approaches for variable selection. Since the Bayesian methods are commonly used in variable selection, it is worth considering the corresponding approaches to subgroup analysis in the Bayesian framework. In this paper, a Bayesian hierarchical model with appropriate prior structures is developed for the pairwise differences of intercepts based on a regression model with subject-specific intercepts, which can automatically detect and identify homogeneous subgroups. A Gibbs sampling algorithm is also provided to select the hyperparameter and estimate the intercepts and coefficients of the covariates simultaneously, which is computationally efficient for pairwise comparisons compared to the time-consuming procedures for parameter estimation of the penalization methods (e.g., alternating direction method of multiplier) in the case of large sample sizes. The effectiveness and usefulness of the proposed Bayesian method are evaluated through simulation studies and analysis of a Cleveland Heart Disease Dataset.  相似文献   

14.
Fang M  Jiang D  Chen X  Pu L  Liu S 《Genetica》2008,134(3):367-375
Using the data of crosses of multiple of inbred lines for mapping QTL can increase QTL detecting power compared with only cross of two inbred lines. Although many fixed-effect model methods have been proposed to analyze such data, they are largely based on one-QTL model or main effect model, and the interaction effects between QTL are always neglected. However, effectively separating the interaction effects from the residual error can increase the statistical power. In this article, we both extended the novel Bayesian model selection method and Bayesian shrinkage estimation approaches to multiple inbred line crosses. With two extensions, interacting QTL are effectively detected with high solution; in addition, the posterior variances for both main effects and interaction effects are also subjected to full Bayesian estimate, which is more optimal than two step approach involved in maximum-likelihood. A series of simulation experiments have been conducted to demonstrate the performance of the methods. The computer program written in FORTRAN language is freely available on request.  相似文献   

15.
Mark rate, or the proportion of the population with unique, identifiable marks, must be determined in order to estimate population size from photographic identification data. In this study we address field sampling protocols and estimation methods for robust estimation of mark rate and its uncertainty in cetacean populations. We present two alternatives for estimating the variance of mark rate: (1) a variance estimator for clusters of unequal sizes (SRCS) and (2) a hierarchical Bayesian model (SRCS-Bayes), and compare them to the simple random sampling (SRS) variance estimator. We tested these variance estimators using a simulation to see how they perform at varying mark rates, number of groups sampled, photos per group, and mean group sizes. The hierarchical Bayesian model outperformed the frequentist variance estimators, with the true mark rate of the population held in its 95% HDI 91.9% of the time (compared with coverage of 79% for the SRS method and 76.3% for the SRCS-Cochran method). The simulation results suggest that, ideally, mark rate and its precision should be quantified using hierarchical Bayesian modeling, and researchers should attempt to sample as many unique groups as possible to improve accuracy and precision.  相似文献   

16.
Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., a large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies confirm that INLA provides accurate approximation of posterior estimates and to reduced computation time and variability of estimates compared to frailtypack in the situations considered. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where INLA has a reduced variability for the association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study. Our study suggests that the Bayesian approach using the INLA algorithm enables to fit complex joint models that might be of interest in a wide range of clinical applications.  相似文献   

17.
In recent years, a number of phylogenetic methods have been developed for estimating molecular rates and divergence dates under models that relax the molecular clock constraint by allowing rate change throughout the tree. These methods are being used with increasing frequency, but there have been few studies into their accuracy. We tested the accuracy of several relaxed-clock methods (penalized likelihood and Bayesian inference using various models of rate change) using nucleotide sequences simulated on a nine-taxon tree. When the sequences evolved with a constant rate, the methods were able to infer rates accurately, but estimates were more precise when a molecular clock was assumed. When the sequences evolved under a model of auto-correlated rate change, rates were accurately estimated using penalized likelihood and by Bayesian inference using lognormal and exponential models of rate change, while other models did not perform as well. When the sequences evolved under a model of uncorrelated rate change, only Bayesian inference using an exponential rate model performed well. Collectively, the results provide a strong recommendation for using the exponential model of rate change if a conservative approach to divergence time estimation is required. A case study is presented in which we use a simulation-based approach to examine the hypothesis of elevated rates in the Cambrian period, and it is found that these high rate estimates might be an artifact of the rate estimation method. If this bias is present, then the ages of metazoan divergences would be systematically underestimated. The results of this study have implications for studies of molecular rates and divergence dates.  相似文献   

18.
MacNab YC 《Biometrics》2003,59(2):305-315
We present Bayesian hierarchical spatial models for spatially correlated small-area health service outcome and utilization rates, with a particular emphasis on the estimation of both measured and unmeasured or unknown covariate effects. This Bayesian hierarchical model framework enables simultaneous modeling of fixed covariate effects and random residual effects. The random effects are modeled via Bayesian prior specifications reflecting spatial heterogeneity globally and relative homogeneity among neighboring areas. The model inference is implemented using Markov chain Monte Carlo methods. Specifically, a hybrid Markov chain Monte Carlo algorithm (Neal, 1995, Bayesian Learning for Neural Networks; Gustafson, MacNab, and Wen, 2003, Statistics and Computing, to appear) is used for posterior sampling of the random effects. To illustrate relevant problems, methods, and techniques, we present an analysis of regional variation in intraventricular hemorrhage incidence rates among neonatal intensive care unit patients across Canada.  相似文献   

19.
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance). Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom-up interactions, for example, in other sensory modalities.  相似文献   

20.
Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号