首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemotaxis and integrin-mediated adhesion of T lymphocytes triggered by secreted cyclophilin B (CypB) depend on interactions with both cell surface heparan sulfate proteoglycans (HSPG) and the extracellular domain of the CD147 membrane receptor. Here, we use NMR spectroscopy to characterize the interaction of CypB with heparin-derived oligosaccharides. Chemical shift perturbation experiments allowed the precise definition of the heparan sulfate (HS) binding site of CypB. The N-terminal extremity of CypB, which contains a consensus sequence for heparin-binding proteins was modeled on the basis of our experimental NMR data. Because the HS binding site extends toward the CypB catalytic pocket, we measured its peptidyl-prolyl cis-trans isomerase (PPIase) activity in the absence or presence of a HS oligosaccharide toward a CD147-derived peptide. We report the first direct evidence that CypB is enzymatically active on CD147, as it is able to accelerate the cis/trans isomerization of the Asp(179)-Pro(180) bond in a CD147-derived peptide. However, HS binding has no significant influence on this PPIase activity. We thus conclude that the glycanic moiety of HSPG serves as anchor for CypB at the cell surface, and that the signal could be transduced by CypB via its PPIase activity toward CD147.  相似文献   

2.
Functional analysis of Leishmania major cyclophilin   总被引:1,自引:0,他引:1  
A potent immunosuppressive drug cyclosporin A (CsA) is known to inhibit human cell infection by the pathogenic protozoan parasite Leishmania major both in vitro and in vivo. The proposed mechanism of action involves CsA binding to Leishmania major-expressed cyclophilin and subsequent down-regulation of signaling events necessary for establishing productive infection. Recently, we identified a ubiquitously expressed membrane protein, CD147, as a signaling receptor for extracellular cyclophilins in mammalian cells. Here we demonstrate that, while being enzymatically active, the Leishmania cyclophilin, unlike its human homologue, does not interact with CD147 on the cell surface of target cells. CD147 facilitates neither Leishmania binding nor infection. Primary structure and biochemical analyses revealed that the parasite's cyclophilin is defective in heparan binding, an event required for signaling interaction between CD147 and human cyclophilin. When the heparan-binding motif was reconstituted in Leishmania cyclophilin, it regained the CD147-dependent signaling activity. These results underscore a critical role of cyclophilin-heparan interactions in CD147-mediated signaling events and argue against the role of Leishmania cyclophilin in parasite binding to target cells.  相似文献   

3.
CD147, also known as extracellular matrix metalloproteinase inducer, is a regulator of matrix metalloproteinase production and serves as a signaling receptor for extracellular cyclophilins. Here we demonstrate that the cell surface expression of CD147 is regulated by cyclophilins via the transmembrane domain of CD147. Solution binding experiments demonstrated that the transmembrane domain was both necessary and sufficient for CD147 binding to cyclophilin A (CypA). Treatment with cyclosporin A significantly reduced surface expression of CD147 and of CD8-CD147 fusion protein carrying the extracellular domain of CD8 fused to the transmembrane and cytoplasmic domains of CD147, but did not affect expression of CD8. Peptide binding studies demonstrated specific interaction between CypA and the proline-containing peptide from the CD147 transmembrane domain. Mutation of this proline residue reduced binding of CD147-derived peptides to CypA and also diminished transport of CD147 to the plasma membrane without reducing the total level of CD147 expression. These results suggest involvement of a cyclophilin-related protein in CD147 cell surface expression and provide molecular details for regulation of CD147 trafficking by cyclophilins.  相似文献   

4.
Cell surface expression of CD147/EMMPRIN is regulated by cyclophilin 60   总被引:2,自引:0,他引:2  
CD147, also known as extracellular matrix metalloproteinase inducer, is a regulator of matrix metalloproteinase production and also serves as a signaling receptor for extracellular cyclophilins. Previously, we demonstrated that cell surface expression of CD147 is sensitive to cyclophilin-binding drug cyclosporin A, suggesting involvement of a cyclophilin in the regulation of intracellular transport of CD147. In this report, we identify this cyclophilin as cyclophilin 60 (Cyp60), a distinct member of the cyclophilin family of proteins. CD147 co-immunoprecipitated with Cyp60, and confocal immunofluorescent microscopy revealed intracellular co-localization of Cyp60 and CD147. This interaction with Cyp60 involved proline 211 of CD147, which was shown previously to be critical for interaction between CD147 and another cyclophilin, cyclophilin A, in solution. Mutation of this proline residue abrogated co-immunoprecipitation of CD147 and Cyp60 and reduced surface expression of CD147 on the plasma membrane. Suppression of Cyp60 expression using RNA interference had an effect similar to that of cyclosporin A: reduction of cell surface expression of CD147. These results suggest that Cyp60 plays an important role in the translocation of CD147 to the cell surface. Therefore, Cyp60 may present a novel target for therapeutic interventions in diseases where CD147 functions as a pathogenic factor, such as cancer, human immunodeficiency virus infection, or rheumatoid arthritis.  相似文献   

5.
Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ25-35 mediates apoptotic cell death. Aβ25-35-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ25-35 toxicity. We showed that Aβ25-35-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ25-35-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway.  相似文献   

6.
HAb18G/CD147, a new hepatoma-associated antigen cloned and screened from human hepatocellular carcinoma cDNA library, is closely correlated with metastasis process in human hepatoma cells. In the present study we aimed to identify the pivotal molecules of the HAb18G/CD147 signal transduction pathway. The investigation showed that betaig-h3, a secretory extracellular matrix (ECM) protein, was upregulated in HAb18G/CD147-expressing human hepatoma T7721 cells and was downregulated by depressing HAb18G/CD147 expression. The expression of betaig-h3, upregulated in human hepatoma cells, was positively relative to the expression of HAb18G/CD147 in different human hepatoma cell lines. By overexpressing betaig-h3 in human SMMC-7721 hepatoma cells, we discovered that betaig-h3 promoted cell adhesion, invasion, and matrix metalloproteinase (MMP) secretion potential. HAb18G/CD147-induced invasion and metastasis potential of human hepatoma cells can be attenuated by antibodies specific for betaig-h3, and no significant differences on inhibitory effects were observed among T7721 cells incubated with antibodies for betaig-h3 or HAb18G/CD147 or both types together. Taken together, our study suggests that betaig-h3, regulated by the expression of HAb18G/CD147, is involved in the HAb18G/CD147 signal transduction pathway and mediates the HAb18G/CD147-induced invasion and metastasis process of human hepatoma cells.  相似文献   

7.
The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins; however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases. However, direct evidence of catalysis has not been shown within the cyclophilin/CD147 complex. In this report, we have characterized the solution behavior of the two most prevalent CD147 extracellular isoforms through biochemical methods that include gel-filtration and native gel analysis as well as directly through multiple NMR methods. All methods indicate that the extracellular immunoglobulin-like domains are monomeric in solution and, thus, suggest that CD147 homophilic interactions in vivo are mediated through other partners. Additionally, using multiple NMR techniques, we have identified and characterized the cyclophilin target site on CD147 and have shown for the first time that CD147 is also a substrate of its primary cyclophilin enzyme ligand, cyclophilin A.  相似文献   

8.
Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.  相似文献   

9.
The pleiotropic actions of PRL are necessary for mammary growth and differentiation and in vitro lymphoid proliferation. The proximal action of this ligand is mediated by its cell surface receptor via associated networks. PRL action, however, is also associated with the internalization and translocation of this hormone into the nucleus. To delineate the mechanism of this retrotranslocation, a yeast two-hybrid screen was performed and revealed an interaction between PRL and cyclophilin B (CypB). CypB is a peptidyl prolyl isomerase (PPI) found in the endoplasmic reticulum, extracellular space, and nucleus. The interaction between CypB and PRL was subsequently confirmed in vitro and in vivo through the use of recombinant proteins and coimmunoprecipitation studies. The exogenous addition of CypB potentiated the 3H-thymidine incorporation of PRL-dependent cell lines up to 18-fold. CypB by itself was nonmitogenic and did not potentiate the action of GH or other interleukins. CypB did not alter the affinity of the PRL receptor (PRLr) for its ligand, or increase the phosphorylation of PRLr-associated Jak2 or Stat5a. The potentiation of PRL-action by CypB, however, was accompanied by a dramatic increase in the nuclear retrotranslocation of PRL. A CypB mutant, termed CypB-NT, was generated that lacked the wild-type N-terminal nuclear localization sequence. Although CypB-NT demonstrated levels of PRL binding and PPI activity equivalent to wild-type CypB, it was incapable of mediating the nuclear retrotranslocation of PRL or enhancing PRL-driven proliferation. These studies reveal CypB as an important chaperone facilitating the nuclear retrotransport and action of the lactogenic hormones.  相似文献   

10.
CD147是一种属于免疫球蛋白超家族的跨膜糖蛋白,可参与多种生理和病理过程,在组织重构、精子发生、神经形成及肿瘤转移等过程中发挥作用,其高表达于某些免疫细胞和肿瘤细胞表面,作为受体可与亲环蛋白(Cyp)结合。Cyp遍布于原核及真核生物中,在人类正常和肿瘤组织中,均可发现亲环蛋白。CypA和CypB这两种亲环蛋白家族中最丰富的成员,在细胞内和细胞外均可发挥重要作用。亲环蛋白与CD147的相互作用在炎症性疾病、心血管疾病及肿瘤的发生发展中具有重要意义,本文对CD147和亲环蛋白这两种蛋白质及其相互作用的研究进展和前景做一综述。  相似文献   

11.
目的:探讨棕榈酸(Palmiticacid,PA)对人肝癌细胞系SMMC-7721侵袭转移能力的影响,并通过检测肝癌细胞系中CD147-MMPs信号通路在PA影响下的变化,初探PA影响肝癌细胞侵袭转移的分子机制。方法:PA(0、20、50、100μM)作用SMMC-7721细胞后(8、16、24h),MTT法检测细胞增殖,划痕及Transwell实验评价细胞迁移侵袭能力,Western-blot及real-time PCR检测CD147蛋白及其mRNA的水平,ELISA检测基质金属蛋白酶(MMP-2,MMP-9)的水平。结果:与对照组相比,PA作用SMMC-7721细胞后,细胞存活率无显著差异(P0.05);细胞迁移和侵袭能力显著增高(P0.05);CD147蛋白及其mRNA的表达显著增高(P0.05);培养上清中MMP-9的浓度显著增高(P0.05),MMP-2的水平则无变化。不同的梯度组之间相比较,细胞迁移和侵袭能力、CD147的表达水平(蛋白及其mRNA)以及培养上清中MMP-9的浓度均随PA作用时间和作用剂量的增大而产生更显著的增高。结论:PA通过活化CD147-MMPs信号通路促进SMMC-7721细胞的迁移侵袭。  相似文献   

12.
Although accumulating evidence had revealed that NFAT1 has oncogenic characteristics, the role of this molecule in melanoma cells remains unclear. Previous studies proved that CD147 plays a crucial function in melanoma cell metastasis and invasion through matrix metalloproteinase 9 (MMP‐9) expression; however, the details of how CD147 regulates MMP‐9 expression remain elusive. In this study, we demonstrated that CD147 and NFAT1 are overexpressed in the tissues of patients with primary and metastatic melanoma, which has shown a positive correlation. Further, we observed that CD147 regulates NFAT1 activation through the [Ca2+]i‐calcineurin pathway. Knockdown of NFAT1 significantly suppresses melanoma metastasis, and we demonstrated that CD147 affects melanoma metastasis in an NFAT1‐dependent manner. Moreover, we verified that NFAT1 directly binds to MMP‐9 promoter. Inhibition of CD147 expression significantly abrogates MMP‐9 promoter luciferase gene reporter activity as well as NFAT1 association with MMP‐9 promoter. Taken together, this study demonstrated that CD147 affects MMP‐9 expression through regulating NFAT1 activity and provided a novel mechanism by which NFAT1 contributes to melanoma metastasis through the regulation of MMP‐9.  相似文献   

13.
Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.  相似文献   

14.
HAb18G/CD147, a glycoprotein of the immunoglobulin super‐family (IgSF), is a T cell activation‐associated molecule. In this report, we demonstrated that HAb18G/CD147 expression on both activated CD4+ and CD8+ T cells was up‐regulated. In vitro cross‐linking of T cells with an anti‐HAb18G/CD147 monoclonal antibody (mAb) 5A12 inhibited T cells proliferation upon T cell receptor stimulation. Such co‐stimulation inhibited T cell proliferation by down‐regulating the expression of CD25 and interleukin‐2 (IL‐2), decreased production of IL‐4 but not interferon‐γ. Laser confocal imaging analysis indicated that HAb18G/CD147 was recruited to the immunological synapse (IS) during T cell activation; triggering HAb18G/CD147 on activated T cells by anti‐HAb18G/CD147 mAb 5A12 strongly dispersed the formation of the IS. Further functional studies showed that the ligation of HAb18G/CD147 with mAb 5A12 decreased the tyrosine phosphorylation and intracellular calcium mobilization levels of T cells. Through docking antibody–antigen interactions, we demonstrated that the function of mAb 5A12 is tightly dependent on its specificity of binding to N‐terminal domain I, which plays pivotal role in the oligomerization of HAb18G/CD147. Taken together, we provide evidence that HAb18G/CD147 could act as a co‐stimulatory receptor to negatively regulate T cell activation and is functionally linked to the formation of the IS.  相似文献   

15.
16.
17.
CD147 is a signaling receptor for cyclophilin B.   总被引:13,自引:0,他引:13  
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A binding proteins that can be secreted in response to inflammatory stimuli. We recently identified CD147 as a cell-surface receptor for CyPA and demonstrated that CD147 is an essential component in the CyPA-initiated signaling cascade that culminates in ERK activation and chemotaxis. Here we demonstrate that CD147 also serves as a receptor for CyPB. CyPB induced Ca(2+) flux and chemotaxis of CD147-transfected, but not control, CHO cells, and the chemotactic response of primary human neutrophils to CyPB was blocked by antibodies to CD147. These results suggest that CD147 serves as a receptor for extracellular cyclophilins.  相似文献   

18.
Transcellular calcium transport in the kidney, pancreas, small intestine, and placenta is partly mediated by transient receptor potential (TRP) channels. The highly selective TRPV6 calcium channel protein is most likely important for the calcium transfer in different specialized epithelial cells. In the human placenta the protein is expressed in trophoblast tissue, where it is implicated in the transepithelial calcium transfer from mother to the fetus. We enriched the TRPV6 channel protein endogenously expressed in placenta together with annexin A2 and cyclophilin B (CypB), which is a member of the huge immunophilin family. In the human placenta TRPV6 and CypB are mainly located intracellularly in the syncytiotrophoblast layer, but a small amount of the mature glycosylated TRPV6 channel protein and CypB is also expressed in microvilli apical membranes, the fetomaternal barrier. To understand the role of CypB on the TRPV6 channel function, we evaluated the effect of CypB co-expression on TRPV6-mediated calcium uptake into Xenopus laevis oocytes expressing TRPV6. A significant increase of TRPV6-mediated calcium uptake was observed after CypB/TRPV6 co-expression. This stimulatory effect of CypB was reversed by the immunosuppressive drug cyclosporin A, which inhibits the enzymatic activity of CypB. Cyclosporin A had no significant effect on TRPV6 and CypB protein expression levels in the oocytes. In summary, our results establish CypB as a new TRPV6 accessory protein with potential involvement in TRPV6 channel activation through its peptidyl-prolyl cis/trans isomerase activity.  相似文献   

19.
Peroxiredoxin 5 (PRDX5) is a novel thioredoxin peroxidase recently identified in a variety of human cells and tissues, which is considered to play an important role in oxidative stress protection mechanisms. However, little is known about its expression in tendon degeneration, a common and disabling condition that primarily affects older people, in which oxidative stress may be implicated. The present study demonstrated that normal human tendon expresses PRDX5 and its expression is significantly increased in degenerative tendon. In addition, we have localized PRDX5 to fibroblasts in normal tendon and to both fibroblasts and endothelial cells in degenerate tendon. The differential expression of PRDX5 in normal and degenerate tendon shows that a thioredoxin peroxidase with antioxidant properties is upregulated under pathophysiological conditions and suggests that oxidative stress may be involved in the pathogenesis of tendon degeneration. PRDX5 may play a protective role against oxidative stress during this pathophysiological process.  相似文献   

20.
CD147 is a type I transmembrane protein previously identified as a signal transducing receptor for extracellular cyclophilins. CD147-expressing cells exhibit a characteristic activation of extracellular-signal regulated kinase 1 and 2 (ERK1/2) in response to stimulation with cyclophilin A (CypA). CD147 was also shown to enhance HIV-1 infection in a CypA-dependent fashion, but the role of signaling in this activity of CD147 has not been investigated. In this report, we demonstrate that neither mutations incapacitating signaling response of CD147 to CypA stimulation, nor inhibitor of ERK activation, reduced susceptibility of cells to HIV-1 infection. Surprisingly, truncation of the cytoplasmic tail of CD147 did not abolish signaling response to CypA, but reduced infection by HIV-1 to the level observed in control cells. These results indicate that CD147 enhances HIV-1 replication in a signaling-independent fashion through specific events mediated by the cytoplasmic domain of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号