首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.  相似文献   

2.
The plant pathogenesis related proteins group 1 (PR-1) and a variety of related mammalian proteins constitute a PR-1 protein family that share sequence and structural similarities. GAPR-1 is a unique family member as thus far it is the only PR-1 family member that is not co-translationally targeted to the lumen of the endoplasmic reticulum before trafficking to either vacuoles or secretion. Here we report that GAPR-1 may form dimers in vitro and in vivo, as determined by yeast two-hybrid screening, biochemical and biophysical assays. The 1.55A crystal structure demonstrates that GAPR-1 is structurally homologous to the other PR-1 family members previously solved (p14a and Ves V 5). Through an examination of inter-molecular interactions between GAPR-1 molecules in the crystal lattice, we propose a number of the highly conserved amino acid residues of the PR-1 family to be involved in the regulation of dimer formation of GAPR-1 with potential implications for other PR-1 family members. We show that mutagenesis of these conserved amino acid residues leads to a greatly increased dimer population. A recent report suggests that PR-1 family members may exhibit serine protease activity and further examination of the dimer interface of GAPR-1 indicates that a catalytic triad similar to that of serine proteases may be formed across the dimer interface by residues from both molecules within the dimer.  相似文献   

3.
Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the K(m). Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.  相似文献   

4.
Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) acts as a negative regulator of autophagy by interacting with Beclin 1 at Golgi membranes in mammalian cells. The molecular mechanism of this interaction is largely unknown. We recently showed that human GAPR-1 (hGAPR-1) has amyloidogenic properties resulting in the formation of protein condensates upon overexpression in Saccharomyces cerevisiae. Here we show that human Beclin 1 (hBeclin 1) has several predicted amyloidogenic regions and that overexpression of hBeclin 1-mCherry in yeast also results in the formation of fluorescent protein condensates. Surprisingly, co-expression of hGAPR-1-GFP and hBeclin 1-mCherry results in a strong reduction of hBeclin 1 condensates. Mutations of the known interaction site on the hGAPR-1 and hBeclin 1 surface abolished the effect on condensate formation during co-expression without affecting the condensate formation properties of the individual proteins. Similarly, a hBeclin 1-derived B18 peptide that is known to bind hGAPR-1 and to interfere with the interaction between hGAPR-1 and hBeclin 1, abolished the reduction of hBeclin 1 condensates by co-expression of hGAPR-1. These results indicate that the same type of protein–protein interactions interfere with condensate formation during co-expression of hGAPR-1 and hBeclin 1 as previously described for their interaction at Golgi membranes. The amyloidogenic properties of the B18 peptide were, however, important for the interaction with hGAPR-1, as mutant peptides with reduced amyloidogenic properties also showed reduced interaction with hGAPR-1 and reduced interference with hGAPR-1/hBeclin 1 condensate formation. We propose that amyloidogenic interactions take place between hGAPR-1 and hBeclin 1 prior to condensate formation.  相似文献   

5.
6.
It has been previously reported that the structure of a human pancreatic ribonuclease variant, namely PM8, constitutes a dimer by the exchange of an N-terminal domain, although in an aqueous solution it is found mainly as a monomer. First, we investigated the solution conditions that favour the dimerization of this variant. At 29 degrees C in a 20% (v/v) ethanol buffer, a significant fraction of the protein is found in dimeric form without the appearance of higher oligomers. This dimer was isolated by size-exclusion chromatography and the dimerization process was studied. The dissociation constant of this dimeric form is 5 mm at 29 degrees C. Analysis of the dependence of the dimerization process on the temperature shows that unlike bovine pancreatic ribonuclease, a decrease in the temperature shifts the monomer-dimer equilibrium to the latter form. We also show that a previous dissociation of the exchangeable domain from the main protein body does not take place before the dimerization process. Our results suggest a model for the dimerization of PM8 that is different to that postulated for the dimerization of the homologous bovine pancreatic ribonuclease. In this model, an open interface is formed first and then intersubunit interactions stabilize the hinge loop in a conformation that completely displaces the equilibrium between nonswapped and swapped dimers to the latter one.  相似文献   

7.
Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 A resolution   总被引:10,自引:0,他引:10  
The crystal structure of Rhe, a lambda-type Bence-Jones protein fragment, has been solved and refined to a resolution of 1.6 A. A model fragment consisting of the complete variable domain and the first three residues of the constant domain yields a crystallographic residual RF value of 0.149. The protein exists as a dimer both in solution and in the crystals. Although the "immunoglobulin fold" is generally preserved in the structure, there are significant differences in both the monomer conformation and in the mode of association of monomers into dimers, when compared to other known Bence-Jones proteins or Fab fragments. The variations in conformation within monomers are particularly significant as they involve non-hypervariable residues, which previously were believed to be part of a "structurally invariant" framework common to all immunoglobulin variable domains. The novel mode of dimerization is equally important, as it can result in combining site shapes and sizes unobtainable with the conventional mode of dimerization. A comparison of the structure with other variable domain dimers reveals further that the variations within monomers and between domains in the dimer are coupled. Some possible functional implications revealed by this coupling are greater variability, induced fitting of the combining site to better accommodate antigenic determinants, and a mechanism for relaying binding information from one end of the variable domain dimer to the other. In addition to providing the most accurate atomic parameters for an immunoglobulin domain yet obtained, the high resolution and extensive refinement resulted in identification of several tightly bound water molecules in key structural positions. These water molecules may be regarded as integral components of the protein. Other water molecules appear to be required to stabilize the novel conformation.  相似文献   

8.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

9.
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter‐membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low‐curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p‐bearing low‐curvature liposomes even when the high‐curvature liposomes are protein‐free. Phosphorylation of the curvature‐sensing amphipathic lipid‐packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high‐curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high‐curvature liposomes and Ypt7p‐bearing low‐curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein–membrane interaction. Such high‐curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole‐vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high‐curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane.   相似文献   

10.
11.
Sayed Y  Wallace LA  Dirr HW 《FEBS letters》2000,465(2-3):169-172
A hydrophobic lock-and-key intersubunit motif involving a phenylalanine is a major structural feature conserved at the dimer interface of classes alpha, mu and pi glutathione transferases. In order to determine the contribution of this subunit interaction towards the function and stability of human class alpha GSTA1-1, the interaction was truncated by replacing the phenylalanine 'key' Phe-51 with serine. The F51S mutant protein is dimeric with a native-like core structure indicating that Phe-51 is not essential for dimerization. The mutation impacts on catalytic and ligandin function suggesting that tertiary structural changes have occurred at/near the active and non-substrate ligand-binding sites. The active site appears to be disrupted mainly at the glutathione-binding region that is adjacent to the lock-and-key intersubunit motif. The F51S mutant displays enhanced exposure of hydrophobic surface and ligandin function. The lock-and-key motif stabilizes the quaternary structure of hGSTA1-1 at the dimer interface and the protein concentration dependence of stability indicates that the dissociation and unfolding processes of the mutant protein remain closely coupled.  相似文献   

12.
Interactions between loops 2, 2′ and 4, known as the loop bundle, stabilize the active site of caspase-3. Loop 4 (L4) is of particular interest due to its location between the active site and the dimer interface. We have disrupted a salt bridge between K242 and E246 at the base of L4 to determine its role in overall conformational stability and in maintaining the active site environment. Stability measurements show that only the K242A single mutant decreases stability of the dimer, whereas both single mutants and the double mutant demonstrate much lower activity compared to wild-type caspase-3. Structural studies of the caspase-3 variants show the involvement of K242 in hydrophobic interactions that stabilize helix 5, near the dimer interface, and the role of E246 appears to be to neutralize the positive charge of K242 within the hydrophobic cluster. Overall, the results suggest E246 and K242 are important in procaspase-3 for their interaction with neighboring residues, not with one another. Conversely, formation of the K242–E246 salt bridge in caspase-3 is needed for an accurate, stable conformation of loop L4 and proper active site formation in the mature enzyme.  相似文献   

13.
The C-terminal domain of the pro-apoptotic protein Bax is a hydrophobic stretch which, it has been predicted, anchors this protein to the outer mitochondrial membrane when apoptosis is induced in the cell. A 21mer peptide imitating this domain has been synthesized together with two mutants, one with a S184 substituted by K and the other with the S184 deleted. When their structures were studied by infrared spectroscopy, it was seen that the three peptides formed aggregates both in solution and within lipid membranes, and that the peptide changed its secondary structure as a consequence of these two mutations. It was also observed that the wild-type peptide and the two mutants became membrane-integral molecules and changed their conformation when they were incorporated into model membranes with the same composition as the outer mitochondrial membrane. With the peptides incorporated in the membranes the location of W188 was studied by fluorescence quenching using the water soluble quencher acrylamide and different doxyl-PC located in the membrane, this residue being found at different membrane depths in each of the three peptides. The fact that the three peptides were able to perturb the motion of the fluorescent probe diphenylhexatriene confirmed their insertion in the membrane. However, whereas the wild type and the DeltaS184 mutant peptides were very efficient in releasing encapsulated carboxyfluorescein from liposomes, the mutant S184K was less efficient. Taken together, these results showed that the mutation tested changed the conformation of the C-terminal domain of Bax and the positions that they adopted when inserted in membranes, confirming the importance of S184 determining the conformation of this domain. At the same time, these results confirmed that the C-terminal domain of Bax participates in disrupting the barrier properties of biomembranes.  相似文献   

14.
The mature human immunodeficiency virus type 1 protease rapidly folds into an enzymatically active stable dimer, exhibiting an intricate interplay between structure formation and dimerization. We now show by NMR and sedimentation equilibrium studies that a mutant protease containing the R87K substitution (PR(R87K)) within the highly conserved Gly(86)-Arg(87)-Asn(88) sequence forms a monomer with a fold similar to a single subunit of the dimer. However, binding of the inhibitor DMP323 to PR(R87K) produces a stable dimer complex. Based on the crystal structure and our NMR results, we postulate that loss of specific interactions involving the side chain of Arg(87) destabilizes PR(R87K) by perturbing the inner C-terminal beta-sheet (residues 96-99 from each monomer), a region that is sandwiched between the two beta-strands formed by the N-terminal residues (residues 1-4) in the mature protease. We systematically examined the folding, dimerization, and catalytic activities of mutant proteases comprising deletions of either one of the terminal regions (residues 1-4 or 96-99) or both. Although both N- and C-terminal beta-strands were found to contribute to dimer stability, our results indicate that the inner C-terminal strands are absolutely essential for dimer formation. Knowledge of the monomer fold and regions critical for dimerization may aid in the rational design of novel inhibitors of the protease to overcome the problem of drug resistance.  相似文献   

15.
Guo S  Zhang X  Seaton BA  Roberts MF 《Biochemistry》2008,47(14):4201-4210
The Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), an interfacial enzyme associated with prokaryotic infectivity, is activated by binding to zwitterionic surfaces, particularly phosphatidycholine (PC). Two tryptophan residues (Trp47 in the two-turn helix B and Trp242 in a disordered loop) at the rim of the barrel structure are critical for this interaction. The helix B region (Ile43 to Gly48) in wild-type PI-PLC orients the side chains of Ile43 and Trp47 so that they pack together and form a hydrophobic protrusion from the protein surface that likely facilitates initial membrane binding. In previous studies we reported that in the crystal structure of the dimeric W47A/W242A mutant, which is unable to bind to PC, the helix B region has been reorganized by the mutation into an extended loop. Here we report the construction and characterization (catalytic activity, fluorescence, and NMR studies) of a series of PI-PLC mutants targeting helix B residues and surrounding regions to explore what is needed to stabilize the "membrane-active" conformation of the helix B region. Results strongly suggest that, while hydrophobic groups and presumably an intact helix B are critical for the initial binding of PI-PLC to membranes, disruption of helix B to allow enzyme dimerization is what leads to the activated PI-PLC conformation.  相似文献   

16.
17.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

18.
Dimerization of the operator binding domain of phage lambda repressor   总被引:2,自引:0,他引:2  
Dimerization of lambda repressor is required for its binding to operator DNA. As part of a continuing study of the structural basis of the coupling between dimer formation and operator binding, we have undertaken 1H NMR and gel filtration studies of the dimerization of the N-terminal domain of lambda repressor. Five protein fragments have been studied: three are wild-type fragments of different length (1-102, 1-92, and 1-90), and two are fragments bearing single amino acid substitutions in residues involved in the dimer interface (1-102, Tyr-88----Cys; 1-92, Ile-84----Ser). The tertiary structure of each species is essentially the same, as monitored by the 1H NMR resonances of internal aromatic groups. However, significant differences are observed in their dimerization properties. 1H NMR resonances of aromatic residues that are involved in the dimer contact allow the monomer-dimer equilibrium to be monitored in solution. The structure of the wild-type dimer contact appears to be similar to that deduced from X-ray crystallography and involves the hydrophobic packing of symmetry-related helices (helix 5) from each monomer. Removal of two contact residues, Val-91 and Ser-92, by limited proteolysis disrupts this interaction and also prevents crystallization. The Ile-84----Ser substitution also disrupts this interaction, which accounts for the severely reduced operator affinity of this mutant protein.  相似文献   

19.
Sauna ZE  Kim IW  Nandigama K  Kopp S  Chiba P  Ambudkar SV 《Biochemistry》2007,46(48):13787-13799
Structural and biochemical studies of ATP-binding cassette (ABC) transporters suggest that an ATP-driven dimerization of the nucleotide-binding domains (NBDs) is an important reaction intermediate of the transport cycle. Moreover, an asymmetric occlusion of ATP at one of the two ATP sites of P-glycoprotein (Pgp) may follow the formation of the symmetric dimer. It has also been postulated that ADP drives the dissociation of the dimer. In this study, we show that the E.S conformation of Pgp (previously demonstrated in the E556Q/E1201Q mutant Pgp) can be obtained with the wild-type protein by use of the nonhydrolyzable ATP analogue ATP-gamma-S. ATP-gamma-S is occluded into the Pgp NBDs at 34 degrees C but not at 4 degrees C, whereas ATP is not occluded at either temperature. Using purified Pgp incorporated into proteoliposomes and ATP-gamma-35S, we demonstrate that the occlusion of ATP-gamma-35S has an Eact of 60 kJ/mol and the stoichiometry of ATP-gamma-35S:Pgp is 1:1 (mol/mol). Additionally, in the conserved Walker B mutant (E556Q/E1201Q) of Pgp, we find occlusion of the nucleoside triphosphate but not the nucleoside diphosphate. Furthermore, Pgp in the occluded nucleotide conformation has reduced affinity for transport substrates. These data provide evidence for the ATP-driven dimerization and ADP-driven dissociation of the NBDs, and although two ATP molecules may initiate dimerization, only one is driven to an occluded pre-hydrolysis intermediate state. Thus, in a full-length ABC transporter like Pgp, it is unlikely that there is complete association and disassociation of NBDs and the occluded nucleotide conformation at one of the NBDs provides the power-stroke at the transport-substrate site.  相似文献   

20.
The importance of unsatisfied hydrogen bonding potential on protein-protein interaction was studied. Two alternate modes of dimerization (conventional and flipped form) of an immunoglobulin light chain variable domain (V(L)) were previously identified. In the flipped form, interface residue Gln89 would have an unsatisfied hydrogen bonding potential. Removal of this Gln should render the flipped dimer as the more favorable quaternary form. High resolution crystallographic studies of the Q89A and Q89L mutants show, as we predicted, that these proteins indeed form flipped dimers with very similar interfaces. A small cavity is present in the Q89A mutant that is reflected in the approximately 100 times lower association constant than found for the Q89L mutant. The association constant of Q89A and Q89L proteins (4 x 10(6) M(-1) and >10(8) M(-1)) are 10- and 1,000-fold higher than that of the wild-type protein that forms conventional dimers clearly showing the energetic reasons for the flipped dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号