首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemerin is a chemoattractant involved in immunity that may also function as an adipokine. Chemerin circulates as an inactive precursor (chem163S), and its activation requires proteolytic cleavages at its C terminus, involving proteases involved in coagulation, fibrinolysis, and inflammation. However, the key proteolytic steps in prochemerin activation in vivo remain to be established. Previously, we have shown that C-terminal cleavage of chem163S by plasmin to chem158K, followed by a carboxypeptidase cleavage, leads to the most active isoform, chem157S. To identify and quantify the in vivo chemerin isoforms in biological specimens, we developed specific ELISAs for chem163S, chem158K, and chem157S, using antibodies raised against peptides from the C terminus of the different chemerin isoforms. We found that the mean plasma concentrations of chem163S, chem158K, and chem157S were 40 ± 7.9, 8.1 ± 2.9, and 0.7 ± 0.8 ng/ml, respectively. The total level of cleaved and noncleaved chemerins in cerebrospinal fluids was ~10% of plasma levels whereas it was elevated ~2-fold in synovial fluids from patients with arthritis. On the other hand, the fraction of cleaved chemerins was much higher in synovial fluid and cerebrospinal fluid samples than in plasma (~75%, 50%, and 18% respectively). Chem158K was the dominant chemerin isoform, and it was not generated by ex vivo processing, indicating that cleavage of prochemerin at position Lys-158, whether by plasmin or another serine protease, represents a major step in prochemerin activation in vivo. Our study provides the first direct evidence that chemerin undergoes extensive proteolytic processing in vivo, underlining the importance of measuring individual isoforms.  相似文献   

2.
3.
The human apolipoproteins are secretory proteins some of which have been shown to undergo proteolytic processing and post-translational addition of carbohydrate. Apolipoprotein A-I (apo-A-I), the predominant protein associated with high density lipoproteins, undergoes co-translational proteolytic processing as well as post-translational conversion of proapo-A-I to mature apo-A-I following cellular secretion. Utilizing the human hepatoma cell line HEP-G2, we have established that, in addition to proteolytic processing, secreted nascent apo-A-I is acylated with palmitate. Uniformly labeled [14C]palmitate and [1-14C]palmitate were each incorporated into apo-A-I when analyzed by sodium dodecyl sulfate gel electrophoresis and autoradiography. The acylation of apo-A-I with palmitate was confirmed by immunoprecipitation and gas chromatography/mass spectrometry. Hydroxylamine treatment resulted in the deacylation of apo-A-I. Although three of the apo-A-I isoforms analyzed by two-dimensional gel electrophoresis were shown to contain radio-labeled palmitate, 80% of acylated apo-A-I was in the proapolipoprotein A-I isoform. [14C]Oleate was not incorporated in secreted apo-A-I, indicating the specificity of the acylation of apo-A-I. Incubation of [14C] palmitate-acylated apo-A-I in serum and plasma under conditions in which proapo-A-I is proteolytically cleaved to mature apo-A-I did not result in deacylation. These data establish that fatty acid acylation occurs in human secretory proteins in addition to the previously reported acylation of cellular membrane proteins. These results suggest that the covalent linkage of lipids to apolipoproteins may play a critical role in apolipoprotein and lipoprotein metabolism.  相似文献   

4.
All Ca2(+)-dependent cell adhesion molecules are synthesized as precursor polypeptides followed by a series of posttranslational modifications including proteolytic cleavage. The mature proteins are formed intracellularly and transported to the cell surface. For uvomorulin the precursor segment is composed of 129-amino acid residues which are cleaved off to generate the 120-kD mature protein. To elucidate the role of proteolytic processing, we constructed cDNAs encoding mutant uvomorulin that could no longer be processed by endogenous proteolytic enzymes and expressed the mutant polypeptides in L cells. Instead of the recognition sites for endogenous proteases, these mutants contained either a recognition site of serum coagulation factor Xa or a new trypsin cleavage site. The intracellular proteolytic processing of mutant polypeptides was inhibited in both cases. The unprocessed polypeptides were efficiently expressed on the cell surface and had other features in common with mature uvomorulin, such as complex formation with catenins and Ca2(+)-dependent resistance to proteolytic degradation. However, cells expressing unprocessed polypeptides showed no uvomorulin-mediated adhesive function. Treatment of the mutant proteins with the respective proteases results in cleavage of the precursor region and the activation of uvomorulin function. However, other proteases although removing the precursor segment were ineffective in activating the adhesive function. These results indicate that correct processing is required for uvomorulin function and emphasize the importance of the amino-terminal region of mature uvomorulin polypeptide in the molecular mechanism of adhesion.  相似文献   

5.
Somatostatin is a 14-amino-acid peptide hormone that is proteolytically excised from its precursor, prosomatostatin, by the action of a paired-basic-specific protease. Yeast (Saccharomyces cerevisiae Mat alpha) synthesizes an analogous peptide hormone precursor, pro-alpha-factor, which is proteolytically processed by at least two separate proteases, the products of the KEX2 and STE13 genes, to generate the mature bioactive peptide. Expression in yeast of recombinant DNAs encoding hybrids between the proregion of alpha-factor and somatostatin results in proteolytic processing of the chimeric precursors and secretion of mature somatostatin. To determine if the chimeras were processed by the same enzymes that cleave endogenous pro-alpha-factor, the hybrid DNAs were introduced into kex2 and ste13 mutants, and the secreted proteins were analyzed. Expression of the pro-alpha-factor-somatostatin hybrids in kex2 mutant yeast resulted in secretion of a high molecular weight hyperglycosylated precursor. No mature somatostatin was secreted, and there was no proteolytic cleavage at the Lys-Arg processing site. Similarly, in ste13 yeast, only somatostatin molecules containing the (Glu-Ala)3 spacer peptide at the amino terminus were secreted. Our results demonstrate that in yeast processing mutants, the behavior of the chimeric precursors with respect to proteolytic processing was exactly as that of endogenous pro-alpha-factor. We conclude that the same enzymes that generate mature alpha-factor proteolytically process hybrid precursors. This suggests that structural domains of the proregion rather than the mature peptide are recognized by the processing proteases.  相似文献   

6.
Surfactant proteolipid SP-B is a hydrophobic protein of Mr = 8000 identified in organic solvent extracts of pulmonary surfactant. Analysis of the human SP-B RNA predicts that the active surfactant peptide is derived by proteolysis of an Mr = 40,000 precursor. In the present work, characteristics of synthesis, secretion and processing of SP-B were demonstrated in a pulmonary adenocarcinoma cell line by immunoprecipitation of radiolabelled precursors. Treatment of cells with tunicamycin resulted in synthesis and secretion of unglycosylated proSP-B of Mr = 39,000. Immunoprecipitation of protein produced by in vitro translation of human lung poly(A)+ RNA detected an Mr = 40,000 protein; the size discrepancy is likely related to cleavage of a leader signal sequence. Endoglycosidase-H-sensitive precursors of Mr = 41,000-43,000, pI = 5.1-5.4 were the first isoforms detected within the cells and were processed to endoglycosidase-H-resistant isoforms and secreted. Neuraminidase and endoglycosidase-F-sensitive forms of proSP-B were first detected in the media at 60 min as Mr = 42-46,000 isoforms with pI = 4.6-5.1. Proteolytically processed isoforms of proSP-B were detected primarily in the media and were generated by cleavage of an amino-terminal Mr = 16,000 peptide resulting in Mr = 27,000-33,000 isoforms (pH = 5.6-6.8). The Mr = 27,000-33,000 isoforms were sensitive to neuraminidase, resulting in isoforms with pH = 6.0-6.8. Digestion of the Mr = 27,000-33,000 peptide with endoglycosidase-F resulted in isoforms of Mr = 23,000, pH = 6.0-6.8. The endoglycosidase-F-resistant peptide of Mr = 16,000, pI = 4.2-4.4 was identified with an antiserum generated against synthetic peptides derived from the amino-terminal domain, as deduced from the SP-B DNA sequence. Further proteolytic processing of the Mr = 27,000-33,000 isoforms to the Mr = 8000 peptide detected in surfactant was not observed in this cell line. Thus, in the H441-4 cells (a cell line with morphologic features of Clara cells), SP-B is synthesized as a preproprotein which undergoes cleavage of a signal sequence and addition of asparagine-linked carbohydrate; proSP-B is secreted by processes which are independent of glycosylation. SP-B peptides of Mr = 27,000-33,000 and Mr = 16,000, representing carboxy and amino-terminal domains, accumulate in the media.  相似文献   

7.
Streptomyces griseus trypsin (E.C. 3.4.21.4) is one of the major extracellular proteinase, which is secreted by S. griseus. The gene encoding S. griseus trypsin was isolated from a S. griseus genomic library by using a synthetic oligonucleotide probe. Fragments containing the gene for S. griseus trypsin were characterized by hybridization and demonstration of proteolytic activity in S. lividans. Deduced amino acid sequence from the nucleotide sequence suggests that S. griseus trypsin is produced as a precursor, consisting of three portions; an amino-terminal pre sequence (32 amino acid residues), a pro sequence (4 residues), and the mature trypsin. The S. griseus trypsin consists of 223 amino acids with a computed molecular weight of 23,112. The existence of proline at the pro and mature junction suggests that the processing of S. griseus trypsin is non-autocatalytic.  相似文献   

8.
9.
CLCA proteins (calcium-activated chloride channel regulators) have been linked to diseases involving secretory disorders, including cystic fibrosis (CF) and asthma. They have been shown to modulate endogenous chloride conductance, possibly by acting as metalloproteases. Based on the differential processing of the subunits after posttranslational cleavage, two subgroups of CLCA proteins can be distinguished. In one subgroup, both subunits are secreted, in the other group, the carboxy-terminal subunit possesses a transmembrane segment, resulting in shedding of only the amino-terminal subunit. Recent data on the post-translational cleavage and proteolytic activity of CLCA are limited to secreted CLCA. In this study, we characterized the cleavage of mCLCA6, a murine CLCA possessing a transmembrane segment. As for secreted CLCA, the cleavage in the endoplasmic reticulum was not observed for a protein with the E157Q mutation in the HEXXH motif of mCLCA6, suggesting that this mutant protein and secreted CLCA family members share a similar autoproteolytic cleavage mechanism. In contrast to secreted CLCA proteins with the E157Q mutation, the uncleaved precursor of the mCLCA6E157Q mutant reached the plasma membrane, where it was cleaved and the amino-terminal subunit was shed into the supernatant. Using crude membrane fractions, we showed that cleavage of the mCLCA6E157Q protein is zinc-dependent and sensitive to metalloprotease inhibitors, suggesting secondary cleavage by a metalloprotease. Interestingly, anchorage of mCLCA6E157Q to the plasma membrane is not essential for its secondary cleavage, because the mCLCA6Δ™E157Q mutant still underwent cleavage. Our data suggest that the processing of CLCA proteins is more complex than previously recognized.  相似文献   

10.
The function of amino-terminal pro-specific peptides (propeptides), sequences often found on intermediate precursor forms of secreted proteins, is poorly understood. Human preproparathyroid hormone (prepro-PTH), a precursor protein containing such a propeptide, is initially synthesized as a precursor containing a 25-amino acid signal sequence, a 6-amino acid propeptide, and the 84-amino acid mature secreted peptide. Cloned cDNA encoding prepro-PTH and synthetic oligonucleotides were used to generate a mutant missing precisely the pro-specific sequences. The effects of this deletion on signal sequence function and on secretion per se were assessed after expression of the mutant cDNA in intact cells and in a cell-free translation system using synthetic mRNA in the presence of microsomal membranes. The mutant precursor protein was inefficiently translocated and cleaved, and cleavage occurred both at the normal site and within the signal sequence. Thus, for the eukaryotic protein prepro-PTH, sequences immediately downstream and separate from the classically defined signal sequence facilitate accurate and efficient signal function.  相似文献   

11.
The insulin receptor is synthesized as a single chain, 190 kDa glycoprotein precursor, which undergoes proteolytic cleavage, carbohydrate processing, and fatty acylation to generate the mature receptor on the plasma membrane. The relationship of these post-translational modifications to the acquisition of receptor function, i.e. ligand binding and phosphokinase activity, is not fully understood. Therefore, the 190 kDa proreceptor and mature receptor kinase activities were separately examined in vitro, and their phosphorylation properties compared. The solubilized receptor precursor from IM-9 lymphocytes was purified by sequential lectin chromatography and, following site specific anti-receptor antibody immunoprecipitation, phosphokinase studies performed. The isolated proreceptor was activated by insulin and phosphorylated exogenous substrate alpha-casein, as similarly observed for the mature receptor. Structurally, the phosphorylated proreceptor was identified as a 360 kDa homodimer under non-reducing condition.  相似文献   

12.
The primary translation product of human intestinal apolipoprotein A-I mRNA was isolated from wheat germ and ascites cell-free translation systems. Comparison of its NH2-terminal sequence with that of plasma high density lipoprotein-associated A-I showed that it is initially synthesized as a preproprotein. Like rat preproapolipoprotein A-I, it contains an 18-amino acid prepeptide and a 6-amino acid propeptide. The highly unusual COOH-terminal Gln-Gln dipeptide present in the rat pro-segment is also represented at the same position in the human sequence. The functional division of the 24-amino acid NH2-terminal extention into pro- and presegments was verified by finding that the stable intracellular form of A-I in a human hepatoma cell line was the proprotein. Edman degradation of radiolabeled intracellular and extracellular A-I indicated that this apolipoprotein was secreted without proteolytic cleavage of its hexapeptide prosegment. Therefore, it appears that apolipoprotein A-I undergoes an additional proteolytic processing step before it is fully integrated into plasma high density lipoprotein. Two-dimensional gel electrophoresis of purified proapolipoprotein A-I isolated from the hepatocyte cell culture media indicated that it corresponds to isoforms 2 and 3, the basic A-I isoproteins which are the precursors of plasma A-I and the predominant plasma A-I isoforms found in patients with Tangier's disease (Zannis, V. I., Lees, A. M., Lees, R. S., and Breslow, J. L. (1982) J. Biol. Chem., 257, 4978-4986). Therefore this pathologic state probably arises from a defect in the conversion of proapolipoprotein A-I to apolipoprotein A-I.  相似文献   

13.
Relaxin is a polypeptide hormone involved in remodeling of the birth canal during parturition. It is synthesized as a preprohormone precursor, which undergoes specific processing to form the mature two-chain disulfide-linked active species that is secreted by the cell. A major part of this processing requires endoproteolytic cleavage at specific pairs of basic amino acid residues, an event necessary for the maturation of a variety of important biologically active proteins, such as insulin and nerve growth factor. Human type 2 preprorelaxin was coexpressed in human kidney 293 cells with the candidate prohormone convertase-processing enzymes mPC1 or mPC2, both cloned from the mouse pituitary tumor AtT-20 cell line, or with the yeast kex2 alpha-mating factor-converting enzyme from Saccharomyces cerevisiae. Prorelaxin expressed alone in 293 cells was secreted into the culture medium unprocessed. Transient coexpression with mPC1 or kex2, but not with mPC2, resulted in the secretion of a low mol wt species with an electrophoretic mobility very similar, if not identical, to that of authentic mature relaxin purified from human placenta. This species was precipitable by monoclonal antibodies specific for relaxin and had a retention time on reverse phase HPLC comparable to that of relaxin. Its analysis by both electrospray and fast atom bombardment mass spectrometry generated mass data that were consistent only with mature relaxin. The basic residues required for mPC1-dependent cleavage of prorelaxin are defined by site-directed mutagenesis.  相似文献   

14.
ProapoA-I (apoA-i+2 isoform) is the major apoA-I isoprotein secreted by the liver and intestine; however, it is a minor isoprotein in plasma and lymph where the major A-I apo-lipoprotein is mature apoA-I (apoA-I0, apoA-I-1, and apoA-I-2 isoforms). In the present report we provide evidence that apoA-I is rapidly and quantitatively converted to mature apoA-I, and the mature apoA-I isoforms are catabolized at equal rates. In these studies, human proapoA-I was isolated from thoracic duct chylomicrons collected during active fat absorption and mature apoA-I was isolated from plasma high density lipoproteins. The isolated lipoproteins were delipidated, fractionated by gel permeation chromatography, and the individual apoA-I isoforms were separated by preparative isoelectrofocusing. The metabolism of apoA-I isoproteins was studied in normal volunteers (N = 6) in a metabolic ward. In the first study proapoA-I and mature apoA-I (apoA-I0 isoform) were injected simultaneously into two normal subjects and the conversion of proapoA-I to mature apoA-I and the decay of radioactivity were followed in plasma and HDL over a 14-day period. ProapoA-I was rapidly and completely converted to mature apoA-I with a fractional rate of conversion of 4.0 pools/day. The average residence times of proapoA-I and mature apoA-I were 0.23 and 6.5 days, respectively. The mature apoA-I derived from proapoA-I had a residence time which was the same as the injected mature apoA-I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Biosynthesis of lysosomal endopeptidases   总被引:6,自引:0,他引:6  
Despite the clear differences between the amino acid sequence and enzymatic specificity of aspartic and cysteine endopeptidases, the biosynthetic processing of lysosomal members of these two families is very similar. With in vitro translation and pulse-chase analysis in tissue culture cells, the biosynthesis of cathepsin D, a aspartic protease, and cathepsins B, H and L, cysteine proteases, are compared. Both aspartic and cysteine endopeptidases undergo cotranslational cleavage of an amino-terminal signal peptide that mediates transport across the endoplasmic reticulum (ER) membrane. Addition of high-mannose carbohydrate also occurs cotranslationally in the lumen of the ER. Proteases of both enzyme classes are initially synthesized as inactive proenzymes possessing amino-terminal activation peptides. Removal of the propeptide generates an active single-chain enzyme. Whether the single-chain enzyme undergoes asymmetric cleavage into a light and a heavy chain appears to be cell type specific. Finally, late during their biosynthesis both classes of enzymes undergo amino acid trimming, losing a few amino acid residues at the cleavage site between the light and heavy chains and/or at their carboxyltermini. During biosynthesis these enzymes are also secreted to some extent. In most cells the secreted enzyme is the proenzyme bearing some complex carbohydrate. Under certain physiological conditions the inactive secreted enzymes may become activated as a result of a conformational change that may or may not result in autolysis. Analysis of the biochemical nature of the various processing steps helps define the cellular pathway followed by newly synthesized proteases targeted to the lysosome.  相似文献   

16.
Two-dimensional electrophoretic analysis of plasma lipoproteins from male Osborne-Mendel rats consistently reveals three isoforms of apolipoprotein A-I (apo-A-I) with the following apparent pI values and quantitative distribution: isoform 3, pI = 5.68, 69%; isoform 4, pI = 5.55, 29%; isoform 5, pI = 5.44, 2%. The two major isoforms were obtained by preparative isoelectric focusing and subjected to NH2-terminal amino acid sequence analysis with the following results: isoform 3, (Asp)-Glu-Pro-Gln-Ser-Gln-Trp-Asp-Arg-Val; isoform 4, X-Glu-Phe-X-Gln-Gln-Asp-Glu-Pro-Gln-Ser. By comparison with the amino acid sequence previously reported for the primary translation product of rat intestinal apo-A-I mRNA (Gordon et al. (1982) J. Biol. Chem. 257, 971-978), isoform 3, the more basic isoform, is identified as mature apo-A-I and isoform 4 as its proform ( proapo -A-I). The proform differs from mature apo-A-I by a 6-amino acid extension at the NH2 terminus. Isoform 5 was not identified further. The plasma steady state distribution of the apo-A-I forms indicates that proapo -A-I is relatively stable in the circulation. Virtually all plasma proapo -A-I is lipoprotein-associated. No significant differences in the steady state proportions of plasma apo-A-I forms were observed between male and female rats, or among various subfractions of plasma high density lipoproteins obtained by heparin-Sepharose affinity chromatography or by density gradient ultracentrifugation. Rats fed a high fat, high cholesterol diet, however, showed an increase in the proportion of circulating proapo -A-I. The relative increase in proform was even more pronounced in rats fed a fat-free diet containing orotic acid. The biosynthesis, secretion, and metabolism of the various apo-A-I forms were also studied. In liver and intestine, the only known sites of apo-A-I synthesis in the rat, approximately 85% of the newly synthesized intracellular apo-A-I, was the proform . Proapo -A-I was also the predominant form (approximately 80%) released into the circulation by isolated, perfused livers and by autoperfused intestinal segments in vivo. Gradual processing of circulating proapo -A-I to mature apo-A-I was observed in vivo following pulse-labeling of apo-A-I with [3H]leucine. Processing in vivo was approximately 80% complete in 10 h.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
M Goedert  R Jakes 《The EMBO journal》1990,9(13):4225-4230
We have expressed six previously cloned isoforms of human microtubule-associated tau protein in Escherichia coli and purified them to homogeneity in a biologically active form. They range from 352 to 441 amino acids in length and differ from each other by the presence of three or four tandem repeats in the carboxy-terminal half and by the presence or absence of 29 or 58 amino acid inserts in the amino-terminus. When mixed together they gave a set of six bands on SDS-PAGE gels with apparent molecular weights of 48-67 kd and with a characteristic pattern of spacings. Four of these bands aligned with the major tau bands found in adult human cerebral cortex following perchloric acid extraction and alkaline phosphatase treatment. They consisted of isoforms with three repeats and no insertions, four repeats and no amino-terminal insertions and three- and four-repeat containing isoforms with the 29 amino acid insertion. In fetal human brain extracts treated with alkaline phosphatase one of the two major tau bands aligned with the three-repeat containing isoform with no insertions, whereas the molecular nature of the second major tau band remains to be established. The recombinant tau isoforms were biologically active at micromolar concentrations, as assessed by their ability to promote microtubule assembly. The rates of assembly were 2.5-3.0 times faster for isoforms containing four repeats when compared with three-repeat containing isoforms, with no significant contribution by the amino-terminal insertions.  相似文献   

18.
SREBP transcription factors: master regulators of lipid homeostasis   总被引:41,自引:0,他引:41  
  相似文献   

19.
The peptide somatostatin exists as two different molecular species. In addition to the most common form, somatostatin-14, there is also a fourteen amino acid N-terminally extended form of the tetradecapeptide, somatostatin-28. Both peptides are synthesized as larger precursors containing paired basic and monobasic amino acids at their processing sites, which upon cleavage generate either somatostatin-14 or -28, respectively. In some species of fish two distinct, but homologous, precursors (prosomatostatin-I and -II) give rise to somatostatin-14 and -28, respectively. Whereas anglerfish prosomatostatin-II was previously shown to release exclusively somatostatin-28, the yeast Saccharomyces cerevisiae proteolytically matures the homologous prosomatostatin-I precursor to somatostatin-28 and -14 as well as to a lysine-extended form of somatostatin-14. The Kex2 endoprotease appears to be essential for the formation of lysine somatostatin-14 and is involved either directly or indirectly in the release of mature somatostatin-14. The isolation of yeast mutants defective in somatostatin-28 expression (sex mutant) allowed the cloning of a non-essential gene, which encodes an aspartyl protease, whose disruption severely affects the cleavage of mature somatostatin-28 from both somatostatin precursors. We conclude that two distinct endoproteases, which demonstrate some cross specificity in vivo, are involved in the proteolytic maturation of prosomatostatin at mono- and dibasic processing sites in yeast.  相似文献   

20.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号