首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic and steady-state measurements of pyrene fluorescence in a variety of model membranes are evaluated in terms of the theory of collisional excimer formation. In the region of 10(-3)-0.1 M pyrene, molecular fluorescence decay in membranes is biphasic and the two component lifetimes do not depend on the pyrene concentration. The lifetime data are consistent with the rate constant for collisional excimer formation being of the order 10(6) M-1 X s-1 or less. The concentration dependence of the component amplitudes is inconsistent with the theory of collisional excimer formation and suggests that pyrene exists in two forms in membranes: a slowly diffusing monomeric form and an aggregated form. The component of molecular fluorescence decay associated with aggregated pyrene is highly correlated with steady-state excimer fluorescence, suggesting that excimer fluorescence in membranes arises from aggregated pyrene in which excimers are formed by a static rather than a collisional mechanism. It is suggested that the concentration dependence of excimer to molecular fluorescence intensity ratios in membranes is related to the equilibrium constant for exchange between monomeric and aggregated pyrene forms rather than to the collisional excimer formation rate constant.  相似文献   

2.
SecB is a homotetrameric, cytosolic chaperone that forms part of the protein translocation machinery in Escherichia coli. We have investigated the bound-state conformation of a model protein substrate of SecB, bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin-labeling and pyrene fluorescence methods. BPTI is a 58-residue protein and contains three disulfide groups between residues 5 and 55, 14 and 38, as well as 30 and 51. Mutants of BPTI that contained only a single disulfide were reduced, and the free cysteines were labeled with either thiol-specific spin labels or pyrene maleimide. The relative proximity of the labeled residues was studied using either electron spin resonance spectroscopy or fluorescence spectroscopy. The data suggest that SecB binds a collapsed coil of reduced unfolded BPTI, which then undergoes a structural rearrangement to a more extended state upon binding to SecB. Binding occurs at multiple sites on the substrate, and the binding site on each SecB monomer accommodates less than 21 substrate residues. In addition, we have labeled four solvent-accessible cysteine residues in the SecB tetramer and have investigated their relative spatial arrangement in the presence and absence of the substrate protein. The electron spin resonance data suggest that these cysteine residues are in close proximity (15 A) when no substrate protein is bound but move away to a distance of greater than 20 A when SecB binds substrate. This is the first direct evidence of a conformational change in SecB upon binding of a substrate protein.  相似文献   

3.
The aldehydes present in acid-soluble type I collagen react with pyrenebutyrylhydrazine to form various types of complexes under different reaction conditions. These complexes exhibit one or more of three different pyrene fluorescence bands: monomer, excimer, and aggregate fluorescence. Collagen, whose aldehydes have been reduced with NaBH4, does not react with this fluorescent hydrazine, confirming that the hydrazine reacts specifically with aldehyde groups to form hydrazones. The absence of a reaction with pepsin-treated collagen also shows that the fluorescent labels are primarily in the nonhelical terminal telopeptides. Upon dialysis, the pyrene label bound to a saturated aldehyde in an α-chain is lost; whereas that bound to an unsaturated aldehyde remains on the protein. The pyrene monomer fluorescence in the β-chain of old collagen is stronger than that of young collagen. The formation of the pyrene excimer fluorescence implies the proximity of two pyrene molecules, probably attached to two adjacent aldehydes. Upon changing from acidic to neutral pH, both excimer and aggregate fluorescence bands disappear within a few seconds, revealing a very rapid alteration at the telopeptides.  相似文献   

4.
Change in aggregation state of insulin upon conjugation with 5-dimethylaminonaphthalene-1-sulfonyl (DNS) group was investigated at neutral pH. DNS group was introduced exclusively into B1 phenylalanine, the N-terminus of the B-chain of insulin. The association state of insulin shifted toward a more highly aggregated one upon conjugation, depending on the mole fraction (d) of DNS group to insulin monomer; at d equal 0.3 the equilibrium between dimer and hexamer was dominant over the range of 1-600 microM, while at d equal 1.0-1.5 DNS-insulin formed a larger aggregate (dodecamer) which is stable over the range of 67-600 microM. The dissociation constant of dimer-hexamer equilibrium at d=0.3 was evaluated to be 2.5 x 10(-10) M2 from the fluorescence anisotropy of the DNS group, which was about one order of magnitude smaller than that of the dimer-hexamer equilibrium in native insulin. Spectroscopic data and fluorescence decay analyses indicated that there exist at least two different environments surrounding the dye bound to B1 phenylalanine and that they are both relatively hydrophilic. It is considered that the major part of DNS group has excitation and emission maxima at longer wavelength with relatively low quantum yield, while the minor part has excitation and emission maxima at shorter wavelengths with relatively high quantum yield. The fluorescence lifetime of the dye was modified by the change in quaternary structure of DNS-lifetime of the dye was modified by the change in quaternary structure of DNS-insulin. Remarkable depolarization of DNS fluorescence was observed at d equal 1.0 and d equal 1.5 due to energy transfer between DNS groups conjugated to B1 phenylalanine in the hexamer or the dodecamer. Critical transfer distance for inter-DNS energy transfer was evaluated to be 15 A. From the molecular model of the insulin crystal, this energy transfer is ascribed to the close proximity, within about 15 A, between DNS groups in dimer units of the hexamer or the dodecamer.  相似文献   

5.
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.  相似文献   

6.
In this work we have applied a kinetic scheme derived from fluorescence kinetics of pyrene-labeled phosphatidylcholine in phosphatidylcholine membrane to explain the fluorescence quenching of 1-palmitoyl-2-(10-[pyrenl-yl]-sn-glycerol-3-phosphatidylchol ine (PPDPC) liposomes by tetracyanoquinodimethane (TCNQ). The scheme was also found to be applicable to neat PPDPC and the effect of the quencher could be attributed to certain steps of the proposed mechanism. The TCNQ molecules influence the fluorescence of pyrene moieties in PPDPC liposome in two ways. Firstly, an interaction between the quencher molecule and the pyrene monomer in the excited state quenches monomer fluorescence and effectively prevents the diffusional formation of the excimer. Secondly, an interaction between the quencher molecule and the excited dimer quenches the excimer fluorescence. The TCNQ molecule does not prevent the formation of the excimer in pyrene moieties aggregated in such a way that they require only a small rotational motion to attain excimer configuration. The diffusional quenching rate constant is calculated to be 1.0 x 10(8) M-1 s-1 for the pyrene monomer quenching and 1.3 x 10(7) M-1 s-1 for the pyrene excimer quenching. The diffusion constant of TCNQ is 1.5 x 10(-7) cm2 s-1 for the interaction radii of 0.8-0.9 nm. The TCNQ molecules are practically totally partitioned in the membrane phase.  相似文献   

7.
The transfer of pyrene between high density lipoproteins was studied as a model of lipid exchange. When high density lipoprotein containing pyrene was mixed with unlabeled lipoprotein, pyrene excimer fluorescence decreased with a half-time of approximately 3 ms. The rate of pyrene transfer was invariant over a 100-fold range of unlabeled lipoprotein concentrations. Since a decrease in excimer fluorescence indicates a decrease in the microscopic concentrations of pyrene, the observed fluorescence change relfects pyrene transfer to unlabeled lipoproteins, and, therefore, dilution of the pyrene molecules. When high density lipoprotein labeled with pyrene was rapidly diluted 1:14 into buffer, a small decrease in excimer fluorescence was observed. The half-time of this fluorescence change was also about 3 ms and represents the half-time for the dissociation of pyrene from high density lipoprotein into water. The latter observation, coupled with the invariant exchange rate with lipoprotein concentration suggests strongly that the limiting step in the transfer of pyrene between high density lipoproteins is the dissociation of pyrene into solvent. Finally, regardless of mechanism, the exchange of pyrene, and presumably other hydrophobic aromatic compounds, among serum high density lipoproteins is extremely fast. This result indicates that these types of compounds can be rapidly assimilated and transported through the body by plasma lipoproteins.  相似文献   

8.
Macromolecular crowding has been shown to have an exacerbating effect on the aggregation propensity of amyloidogenic proteins; while having an inhibitory effect on the non-amyloidogenic proteins. However, the results concerning aggregation propensity of non-amyloidogenic proteins have not been convincing due to the contrasting effect on holo-LA, which despite being a non-amyloidogenic protein was observed to aggregate under crowded conditions. In the present study, we have extensively characterized the crowding-induced holo-LA aggregates and investigated the possible mechanism responsible for the aggregation process. We discovered that macromolecular crowding reduces the calcium binding affinity of holo-LA resulting in the formation of apo-LA (the calcium-depleted form of holo-LA) leading to aggregate formation. Another finding is that calcium acts as a chaperone capable of inhibiting and dissociating crowding-induced holo-LA aggregates. The study has a direct implication to Alzheimer Disease as the results invoke a new mechanism to prevent Aβ fibrillation.  相似文献   

9.
The transfer of pyrene between 1-acid glycoprotein, acethylcholinesterase and sonicated liposomes was used to monitor glycoprotein-protein interaction on the lipid bilayer. When a density solution of glycoprotein or protein labeled with pyrene was mixed with unlabeled suspension of free-phospholipid liposomes, or suspensions containing the complexes of glycoprotein-lipid, protein-lipid, or glycoprotein-protein-lipid, pyrene excimer fluorescence increased with a half-time of approximately 30–50 msec. Since the increase in excimer fluorescence indicates an increase in the microscope concentrations of pyrene, the observed fluorescence change reflects pyrene transfer. The half-times for the increase in excimer fluorescence were determined in the presence of glycoprotein and protein in the liposomes. On the basis of the determined half-times it was concluded that both, glycoprotein and protein are bound on the lipid bilayer. Our data also suggest that the thickness of the lipid bilayer is significantly changed in this case. The observation suggests strongly that the limiting step in the transfer of pyrene is not the dissociation of pyrene, but the uptake of the pyrene monomers by the lipid phase.  相似文献   

10.
The substrate specificity of alkaline elastase Bacillus from alkalophilic Bacillus sp. Ya-B was investigated using oxidized insulin A- and B-chains. Under time-limited cleavage, the initial cleavage site of the enzyme on the oxidized insulin A-chain and B-chain was at the leucine13-tyrosine14 bond and the leucine15-tyrosine16 bond, respectively. When the cleavage was completed, three major cleavage sites and three minor cleavage sites on the A-chain, and five major cleavage sites and four minor cleavage sites on the B-chain were found. However, most of the peptides produced after complete hydrolysis of the A- or B-chain by the enzyme were composed of four to six amino acid residues. The results suggest that this enzyme cleaves the oxidized insulin A- and B-chains in a block-cutting manner.  相似文献   

11.
Evidence that membrane-associated amyloid aggregate growth can impart membrane damage represents one possible mechanism for the neurodegeneration associated with deposited amyloid-β protein (Aβ) aggregates in the brains of Alzheimer’s disease (AD) patients. This potential pathogenic event necessitates an understanding of the impact that cellular membrane composition may have on Aβ aggregate growth. In the current study, a quartz crystal microbalance (QCM) was employed to examine the growth of Aβ1-40 aggregation intermediates on supported phospholipid bilayers (SPBs) assembled at the crystal surface. These surface-specific measurements illustrate that zwitterionic SPBs selectively bind aggregated but not monomeric protein, and these bound aggregates are capable of supporting nonsaturable reversible growth via monomer addition. Growth-capable Aβ1-40 aggregation intermediates more readily bind SPBs composed of phospholipids with a greater degree of carbon saturation. Furthermore, kinetic analysis afforded by the quantitative real-time QCM measurements reveals that SPBs with greater saturation also better support the growth of bound Aβ1-40 aggregation intermediates as a result of the slower dissociation of bound monomer rather than more efficient recognition between aggregate and monomeric protein. These findings correlate with epidemiological and experimental evidence that links increased dietary intake of polyunsaturated fatty acids to a reduced risk of AD.  相似文献   

12.
Protein aggregation plays an important role in biotechnology and also causes numerous diseases. Human carbonic anhydrase II is a suitable model protein for studying the mechanism of aggregation. We found that a molten globule state of the enzyme formed aggregates. The intermolecular interactions involved in aggregate formation were localized in a direct way by measuring excimer formation between each of 20 site-specific pyrene-labeled cysteine mutants. The contact area of the aggregated protein was very specific, and all sites included in the intermolecular interactions were located in the large beta-sheet of the protein, within a limited region between the central beta-strands 4 and 7. This substructure is very hydrophobic, which underlines the importance of hydrophobic interactions between specific beta-sheet containing regions in aggregate formation.  相似文献   

13.
To improve understanding and identify novel substrates of the cytoplasmic chaperone SecB in Escherichia coli, we analyzed a secB null mutant using comparative proteomics. The secB null mutation did not affect cell growth but caused significant differences at the proteome level. In the absence of SecB, dynamic protein aggregates containing predominantly secretory proteins accumulated in the cytoplasm. Unprocessed secretory proteins were detected in radiolabeled whole cell lysates. Furthermore, the assembly of a large fraction of the outer membrane proteome was slowed down, whereas its steady state composition was hardly affected. In response to aggregation and delayed sorting of secretory proteins, cytoplasmic chaperones DnaK, GroEL/ES, ClpB, IbpA/B, and HslU were up-regulated severalfold, most likely to stabilize secretory proteins during their delayed translocation and/or rescue aggregated secretory proteins. The SecB/A dependence of 12 secretory proteins affected by the secB null mutation (DegP, FhuA, FkpA, OmpT, OmpX, OppA, TolB, TolC, YbgF, YcgK, YgiW, and YncE) was confirmed by "classical" pulse-labeling experiments. Our study more than triples the number of known SecB-dependent secretory proteins and shows that the primary role of SecB is to facilitate the targeting of secretory proteins to the Sec-translocase.  相似文献   

14.
Human γ-crystallins are long-lived, unusually stable proteins of the eye lens exhibiting duplicated, double Greek key domains. The lens also contains high concentrations of the small heat shock chaperone α-crystallin, which suppresses aggregation of model substrates in vitro. Mature-onset cataract is believed to represent an aggregated state of partially unfolded and covalently damaged crystallins. Nonetheless, the lack of cell or tissue culture for anucleate lens fibers and the insoluble state of cataract proteins have made it difficult to identify the conformation of the human γ-crystallin substrate species recognized by human α-crystallin. The three major human lens monomeric γ-crystallins, γD, γC, and γS, all refold in vitro in the absence of chaperones, on dilution from denaturant into buffer. However, off-pathway aggregation of the partially folded intermediates competes with productive refolding. Incubation with human αB-crystallin chaperone during refolding suppressed the aggregation pathways of the three human γ-crystallin proteins. The chaperone did not dissociate or refold the aggregated chains under these conditions. The αB-crystallin oligomers formed long-lived stable complexes with their γD-crystallin substrates. Using α-crystallin chaperone variants lacking tryptophans, we obtained fluorescence spectra of the chaperone-substrate complex. Binding of substrate γ-crystallins with two or three of the four buried tryptophans replaced by phenylalanines showed that the bound substrate remained in a partially folded state with neither domain native-like. These in vitro results provide support for protein unfolding/protein aggregation models for cataract, with α-crystallin suppressing aggregation of damaged or unfolded proteins through early adulthood but becoming saturated with advancing age.  相似文献   

15.
Smooth muscle thin filaments are made up of actin, tropomyosin, caldesmon, and a Ca(2+)-binding protein and their interaction with myosin is Ca(2+)-regulated. We suggested that Ca(2+) regulation by caldesmon and Ca(2+)-calmodulin is achieved by controlling the state of thin filament through a cooperative-allosteric mechanism homologous to troponin-tropomyosin in striated muscles. In the present work, we have tested this hypothesis. We monitored directly the thin filament transition between the ON and OFF state using the excimer fluorescence of pyrene iodoacetamide (PIA)-labeled smooth muscle alphaalpha-tropomyosin homodimers. In steady state fluorescence measurements, myosin subfragment 1 (S1) cooperatively switches the thin filaments to the ON state, and this is exhibited as an increase in the excimer fluorescence. In contrast, caldesmon decreases the excimer fluorescence, indicating a switch of the thin filament to the OFF state. Addition of Ca(2+)-calmodulin increases the excimer fluorescence, indicating a switch of the thin filament to the ON state. The excimer fluorescence was also used to monitor the kinetics of the ON-OFF transition in a stopped-flow apparatus. When ATP induces S1 dissociation from actin-PIA-tropomyosin, the transition to the OFF state is delayed until all S1 molecules are dissociated actin. In contrast, caldesmon switches the thin filament to the OFF state in a cooperative way, and no lag is displayed in the time course of the caldesmon-induced fluorescence decrease. We have also studied caldesmon and Ca(2+)-calmodulin-caldesmon binding to actin-tropomyosin in the ON and OFF states. The results are used to discuss both caldesmon inhibition and Ca(2+)-calmodulin-caldesmon activation of actin-tropomyosin.  相似文献   

16.
17.
Escherichia coli protein export involves cytosolic components termed molecular chaperones which function to stabilize precursors for membrane translocation. It has been suggested that chaperones maintain precursor proteins in a loosely folded state. We now demonstrate that purified proOmpA in its translocation component conformation contains both secondary and tertiary structure as analyzed by circular dichroism and intrinsic tryptophan fluorescence. Association with one molecular chaperone, SecB, subtly modulates the conformation of proOmpA and stabilizes it by inhibiting aggregation, permitting its translocation across inverted E.coli inner membrane vesicles. These results suggest that translocation competence does not simply result from the maintenance of an unfolded state and that molecular chaperones can stabilize precursor proteins by inhibiting their oligomerization.  相似文献   

18.
Maltose binding protein (MBP) is widely used as a model for protein folding and export studies. We show here that macroscopic aggregates form transiently during the refolding of MBP at micromolar protein concentrations. Disaggregation occurs spontaneously without any aid, and the refolded material has structure and activity identical to those of the native, nondenatured protein. A considerable fraction of protein undergoing folding partitions into the aggregate phase and can be manually separated from the soluble phase by centrifugation. The separated MBP precipitate can be resolubilized and yields active, refolded protein. This demonstrates that both the soluble and aggregate phases contribute to the final yield of refolded protein. SecB, the cognate Escherichia coli cytosolic chaperone in vivo for MBP, reduces but does not entirely prevent aggregation, whereas GroEL and a variety of other control proteins have no effect. Kinetic studies using a variety of spectroscopic probes show that aggregation occurs through a collapsed intermediate with some secondary structure. The aggregate formed during refolding can convert directly to a near native state without going through the unfolded state. Further, optical and electron microscopic studies indicate that the MBP precipitate is not an amyloid.  相似文献   

19.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

20.
The tendency of proteins to aggregate is an important problem in biotechnology and the pharmaceutical industry. Because proteins in the aggregated state generally do not have the same biological activity as proteins in the native state. In order to prevent aggregation, it is essential to know the effective parameters in anti-aggregation mechanism. Using a chemical protein modification approach, UV-vis and fluorescence spectroscopies and circular dichroism spectropolarimetry, this study investigates the parameters involved in anti-aggregation mechanism of bovine liver catalase. Our findings clearly indicate that the modified bovine liver catalase provides better protection than the native enzyme against thermal aggregation. It seems that a decrease in hydrophobicity resulting in chemical modification plays an important role in preventing aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号