首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular adhesion, motility, endocytosis, exocytosis and cytokinesis involve the coordinated reorganization of the cytoskeleton and of the plasma membrane. The 'Pombe Cdc15 homology' (PCH) family of adaptor proteins has recently been shown to coordinate the membrane and cytoskeletal dynamics involved in these processes by curving membranes, recruiting dynamin and controlling the architecture of the actin cytoskeleton. Mutations in PCH family members or proteins that interact with them are associated with autoinflammatory, neurological or neoplastic diseases. Here, we review the nature, actions and disease associations of the vertebrate PCH family members, highlighting their fundamental roles in the regulation of processes involving membrane-cytoskeletal interactions.  相似文献   

2.
Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is essential for cytokinesis in S. pombe, and in the related PCH protein, Imp2. We find that the distinct functions of Imp2 and Cdc15 are SH3 domain independent. However, the Cdc15 and Imp2 SH3 domains share an essential role in recruiting proteins to the contractile ring, including Pxl1 and Fic1. Together, Pxl1 and Fic1, a previously uncharacterized C2 domain protein, add structural integrity to the contractile ring and prevent it from fragmenting during division. Our data indicate that the F-BAR proteins Cdc15 and Imp2 contribute to a single biological process with both distinct and overlapping functions.  相似文献   

3.
NOSTRIN, an NO synthase binding protein, belongs to the PCH family of proteins, exposing a typical domain structure. While its SH3 domain and the C-terminal coiled-coil region cc2 have been studied earlier, the function of the N-terminal half comprising a Cdc15 domain with an FCH (Fes/CIP homology) region followed by a coiled-coil stretch cc1 is unknown. Here, we show that the FCH region is necessary and sufficient for membrane association of NOSTRIN, whereas the Cdc15 domain further specifies subcellular distribution of the protein. Thus, the FCH region and the Cdc15 domain fulfill complementary functions in subcellular targeting of NOSTRIN.  相似文献   

4.
The conserved FER-CIP4 homology (FCH) domain is found in the pombe Cdc15 homology (PCH) protein family members, including formin-binding protein 17 (FBP17). However, the amino acid sequence homology extends beyond the FCH domain. We have termed this region the extended FC (EFC) domain. We found that FBP17 coordinated membrane deformation with actin cytoskeleton reorganization during endocytosis. The EFC domains of FBP17, CIP4, and other PCH protein family members show weak homology to the Bin-amphiphysin-Rvs (BAR) domain. The EFC domains bound strongly to phosphatidylserine and phosphatidylinositol 4,5-bisphosphate and deformed the plasma membrane and liposomes into narrow tubules. Most PCH proteins possess an SH3 domain that is known to bind to dynamin and that recruited and activated neural Wiskott-Aldrich syndrome protein (N-WASP) at the plasma membrane. FBP17 and/or CIP4 contributed to the formation of the protein complex, including N-WASP and dynamin-2, in the early stage of endocytosis. Furthermore, knockdown of endogenous FBP17 and CIP4 impaired endocytosis. Our data indicate that PCH protein family members couple membrane deformation to actin cytoskeleton reorganization in various cellular processes.  相似文献   

5.
Background information. The F‐BAR {Fes/CIP4 [Cdc42 (cell division cycle 42)‐interacting protein 4] homology and BAR (Bin/amphiphysin/Rvs)} proteins have emerged as important co‐ordinators of signalling pathways that regulate actin assembly and membrane dynamics. The presence of the F‐BAR domain is the hallmark of this family of proteins and the CIP4 (Cdc42‐interacting protein 4) was one of the first identified vertebrate F‐BAR proteins. There are three human CIP4 paralogues, namely CIP4, FBP17 (formin‐binding protein 17) and Toca‐1 (transducer of Cdc42‐dependent actin assembly 1). The CIP4‐like proteins have been implicated in Cdc42‐dependent actin reorganization and in regulation of membrane deformation events visible as tubulation of lipid bilayers. Results. We performed side‐by‐side analyses of the three CIP4 paralogues. We found that the three CIP4‐like proteins vary in their effectiveness to catalyse membrane tubulation and actin reorganization. Moreover, we show that the CIP4‐dependent membrane tubulation is enhanced in the presence of activated Cdc42. Some F‐BAR members have been shown to have a role in the endocytosis of the EGF (epidermal growth factor) receptor and this prompted us to study the involvement of the CIP4‐like proteins in signalling of the PDGFRβ [PDGF (platelet‐derived growth factor) β‐receptor]. We found that knock‐down of CIP4‐like proteins resulted in a prolonged formation of PDGF‐induced dorsal ruffles, as well as an increased PDGF‐dependent cell migration. This was most likely a consequence of a sustained PDGFRβ activation caused by delayed internalization of the receptor in the cells treated with siRNA (small interfering RNA) specific for the CIP4‐like proteins. Conclusions. Our findings show that CIP4‐like proteins induced membrane tubulation downstream of Cdc42 and that they have important roles in PDGF‐dependent actin reorganization and cell migration by regulating internalization and activity of the PDGFRβ. Moreover, the results suggest an important role for the CIP4‐like proteins in the regulation of the activity of the PDGFRβ.  相似文献   

6.
Pombe Cdc15 homology (PCH) proteins play an important role in a variety of actin-based processes, including clathrin-mediated endocytosis (CME). The defining feature of the PCH proteins is an evolutionarily conserved EFC/F-BAR domain for membrane association and tubulation. In the present study, we solved the crystal structures of the EFC domains of human FBP17 and CIP4. The structures revealed a gently curved helical-bundle dimer of approximately 220 A in length, which forms filaments through end-to-end interactions in the crystals. The curved EFC dimer fits a tubular membrane with an approximately 600 A diameter. We subsequently proposed a model in which the curved EFC filament drives tubulation. In fact, striation of tubular membranes was observed by phase-contrast cryo-transmission electron microscopy, and mutations that impaired filament formation also impaired membrane tubulation and cell membrane invagination. Furthermore, FBP17 is recruited to clathrin-coated pits in the late stage of CME, indicating its physiological role.  相似文献   

7.
In Schizosaccharomyces pombe, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). Nucleation of F-actin for the CR requires a single formin, Cdc12, that localizes to the cell middle at mitotic onset. Although genetic requirements for formin Cdc12 recruitment have been determined, the molecular mechanisms dictating its targeting to the medial cortex during cytokinesis are unknown. In this paper, we define a short motif within the N terminus of Cdc12 that binds directly to the F-BAR domain of the scaffolding protein Cdc15. Mutations preventing the Cdc12–Cdc15 interaction resulted in reduced Cdc12, F-actin, and actin-binding proteins at the CR, which in turn led to a delay in CR formation and sensitivity to other perturbations of CR assembly. We conclude that Cdc15 contributes to CR formation and cytokinesis via formin Cdc12 recruitment, defining a novel cytokinetic function for an F-BAR domain.  相似文献   

8.
Both phosphoinositides and small GTP-binding proteins of the Rho family have been postulated to regulate actin assembly in cells. We have reconstituted actin assembly in response to these signals in Xenopus extracts and examined the relationship of these pathways. We have found that GTPγS stimulates actin assembly in the presence of endogenous membrane vesicles in low speed extracts. These membrane vesicles are required, but can be replaced by lipid vesicles prepared from purified phospholipids containing phosphoinositides. Vesicles containing phosphatidylinositol (4,5) bisphosphate or phosphatidylinositol (3,4,5) trisphosphate can induce actin assembly even in the absence of GTPγS. RhoGDI, a guanine-nucleotide dissociation inhibitor for the Rho family, inhibits phosphoinositide-induced actin assembly, suggesting the involvement of the Rho family small G proteins. Using various dominant mutants of these G proteins, we demonstrate the requirement of Cdc42 for phosphoinositide-induced actin assembly. Our results suggest that phosphoinositides may act to facilitate GTP exchange on Cdc42, as well as to anchor Cdc42 and actin nucleation activities. Hence, both phosphoinositides and Cdc42 are required to induce actin assembly in this cell-free system.  相似文献   

9.
The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.  相似文献   

10.
Ho HY  Rohatgi R  Lebensohn AM  Le Ma  Li J  Gygi SP  Kirschner MW 《Cell》2004,118(2):203-216
An important signaling pathway to the actin cytoskeleton links the Rho family GTPase Cdc42 to the actin-nucleating Arp2/3 complex through N-WASP. Nevertheless, these previously identified components are not sufficient to mediate Cdc42-induced actin polymerization in a physiological context. In this paper, we describe the biochemical purification of Toca-1 (transducer of Cdc42-dependent actin assembly) as an essential component of the Cdc42 pathway. Toca-1 binds both N-WASP and Cdc42 and is a member of the evolutionarily conserved PCH protein family. Toca-1 promotes actin nucleation by activating the N-WASP-WIP/CR16 complex, the predominant form of N-WASP in cells. Thus, the cooperative actions of two distinct Cdc42 effectors, the N-WASP-WIP complex and Toca-1, are required for Cdc42-induced actin assembly. These findings represent a significantly revised view of Cdc42-signaling and shed light on the pathogenesis of Wiskott-Aldrich syndrome.  相似文献   

11.
The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.  相似文献   

12.
The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation.  相似文献   

13.
Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.  相似文献   

14.
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that removes misfolded proteins from the ER. ERAD substrates are channelled from the ER via a proteinacious pore to the cytosolic ubiquitin-proteasome system - a process involving dedicated ubiquitin ligases and the chaperone-like AAA ATPase Cdc48 (also known as p97). How the activities of these proteins are coupled remains unclear. Here we show that the UBX domain protein Ubx2 is an integral ER membrane protein that recruits Cdc48 to the ER. Moreover, Ubx2 mediates binding of Cdc48 to the ubiquitin ligases Hrd1 and Doa10, and to ERAD substrates. In addition, Ubx2 and Cdc48 interact with Der1 and Dfm1, yeast homologues of the putative dislocation pore protein Derlin-1 (refs 11-13). Lack of Ubx2 causes defects in ERAD that are exacerbated under stress conditions. These findings are consistent with a model in which Ubx2 coordinates the assembly of a highly efficient ERAD machinery at the ER membrane.  相似文献   

15.
The hexameric AAA-ATPase, Cdc48p, catalyzes an array of cellular activities, including endoplasmic reticulum (ER)-associated degradation (ERAD), ER/Golgi membrane dynamics, and DNA replication. Accumulating data suggest that unique Cdc48p partners, such as Npl4p-Ufd1p and Ubx1p/Shp1p (p47 in vertebrates), target Cdc48p for these diverse functions. Other Cdc48p-associated proteins have been identified, but the interplay among these factors and their activities is largely cryptic. We now report on a previously uncharacterized Cdc48p-associated protein, Ydr049p, also known as Vms1p, which binds Cdc48p at both the ER membrane and in the cytosol under non-stressed conditions. Loss of YDR049 modestly slows the degradation of the cystic fibrosis transmembrane conductance regulator but does not impede substrate ubiquitination, suggesting that Ydr049p acts at a postubiquitination step in the ERAD pathway. Consistent with Ydr049p playing a role in Cdc48p substrate release, ydr049 mutant cells accumulate Cdc48p-bound ubiquitinated proteins at the ER membrane. Moreover, YDR049 interacts with genes encoding select UBX (ubiquitin regulatory X) and UFD (ubiquitin fusion degradation) proteins, which are Cdc48p partners. Exacerbated growth defects are apparent in some of the mutant combinations, and synergistic effects on the degradation of cystic fibrosis transmembrane conductance regulator and CPY*, which is a soluble ERAD substrate, are evident in specific ydr049-ufd and -ubx mutants. These data suggest that Ydr049p acts in parallel with Cdc48p partners to modulate ERAD and other cellular activities.  相似文献   

16.
N-WASP and Arp2/3, the components of the actin nucleation/polymerization signaling pathway governed by Cdc42, are located in Golgi membranes and regulate ER/Golgi interface protein transport. In the present study, we examined whether RhoA and Rac1, like Cdc42, are also involved in this early secretory pathway. Unlike Cdc42, RhoA and Rac1 were not observed in the Golgi complex of different clonal cell lines nor were they present in isolated Golgi membranes. Expression of constitutively active or inactive mutants of RhoA or Rac1 proteins in HeLa cells did not alter either the disassembly or the assembly of the Golgi complex following the addition or withdrawal of BFA, respectively, the ER-to-Golgi VSV-G transport or the Sar1(dn)-induced ER accumulation of Golgi proteins. Moreover, unlike Cdc42-expressing cells, the 15 degrees C-induced subcellular redistribution of the KDEL receptor remained unaltered. Only cells that constitutively express the activated Cdc42 mutant (Cdc42Q61L), or that were microinjected with activated Cdc42Q61L protein, exhibited a significant change in Golgi complex morphology. Collectively, our results demonstrate that RhoA and Rac1 are not located in the Golgi complex, nor do they directly or indirectly regulate membrane trafficking at the ER/Golgi interface. This finding, in turn, confirms that Cdc42 is the only Rho GTPase to have a specific function on the Golgi complex.  相似文献   

17.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

18.
A modular design for the clathrin- and actin-mediated endocytosis machinery   总被引:38,自引:0,他引:38  
Kaksonen M  Toret CP  Drubin DG 《Cell》2005,123(2):305-320
Endocytosis depends on an extensive network of interacting proteins that execute a series of distinct subprocesses. Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization. Here, we analyzed the effects of 61 deletion mutants on the dynamics of this pathway, revealing functions for 15 proteins, and we analyzed the dynamics of 8 of these proteins. Our studies provide evidence for four protein modules that cooperate to drive coat formation, membrane invagination, actin-meshwork assembly, and vesicle scission during clathrin/actin-mediated endocytosis. We found that clathrin facilitates the initiation of endocytic-site assembly but is not needed for membrane invagination or vesicle formation. Finally, we present evidence that the actin-meshwork assembly that drives membrane invagination is nucleated proximally to the plasma membrane, opposite to the orientation observed for previously studied actin-assembly-driven motility processes.  相似文献   

19.
Many bacterial pathogens reorganize the host actin cytoskeleton during the course of infection, including enterohemorrhagic Escherichia coli (EHEC), which utilizes the effector protein EspF(U) to assemble actin filaments within plasma membrane protrusions called pedestals. EspF(U) activates N-WASP, a host actin nucleation-promoting factor that is normally auto-inhibited and found in a complex with the actin-binding protein WIP. Under native conditions, this N-WASP/WIP complex is activated by the small GTPase Cdc42 in concert with several different SH3 (Src-homology-3) domain-containing proteins. In the current study, we tested whether SH3 domains from the F-BAR (FCH-Bin-Amphiphysin-Rvs) subfamily of membrane-deforming proteins are involved in actin pedestal formation. We found that three F-BAR proteins: CIP4, FBP17, and TOCA1 (transducer of Cdc42-dependent actin assembly), play different roles during actin pedestal biogenesis. Whereas CIP4 and FBP17 inhibited actin pedestal assembly, TOCA1 stimulated this process. TOCA1 was recruited to pedestals by its SH3 domain, which bound directly to proline-rich sequences within EspF(U). Moreover, EspF(U) and TOCA1 activated the N-WASP/WIP complex in an additive fashion in vitro, suggesting that TOCA1 can augment actin assembly within pedestals. These results reveal that EspF(U) acts as a scaffold to recruit multiple actin assembly factors whose functions are normally regulated by Cdc42.  相似文献   

20.
Nikki M  Meriläinen J  Lehto VP 《Biochemistry》2002,41(20):6320-6329
FAP52 is a recently described focal adhesion-associated protein. It is a member of an emerging PCH (pombe Cdc15 homology) family of proteins characterized by a common domain organization and involvement in actin cytoskeleton organization, cytokinesis, and vesicular trafficking. Using gel filtration, surface plasmon resonance, and native polyacrylamide gel electrophoresis analysis, combined with chemical cross-linking of both native and recombinant protein, we show that FAP52 self-associates in vitro and suggest that it occurs predominantly as a trimer also in vivo. Analysis of the various domains of FAP52 by surface plasmon resonance showed that the highly alpha-helical region in the N-terminal half of the protein provides the self-association interface. Overexpression of the oligomerization domain in cultured cells was accompanied by major alterations in cellular morphology, actin organization, and the structure of focal adhesions, suggesting that an orderly coming together of FAP52 molecules is crucial for a proper actin filament organization and cytoskeletal structure. Comparison of the primary structures shows that all of the members of the PCH family have, in their N-terminal halves, a similar, highly alpha-helical region, suggesting that they all have a capacity to self-associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号