首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP-alpha-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.  相似文献   

2.
Centrosomes of vertebrate cells and spindle pole bodies (SPBs) of fungi were first recognized through their ability to organize microtubules. Recent studies suggest that centrosomes and SPBs also have a function in the regulation of cell cycle progression, in particular in controlling late mitotic events. Regulators of mitotic exit and cytokinesis are associated with the SPB of budding and fission yeast. Elucidation of the molecular roles played by these regulators is helping to clarify the function of the SPB in controlling progression though mitosis.  相似文献   

3.
The nucleus of the budding yeast S. cerevisiae has to move to the bud neck during mitosis in order for proper DNA segregation to take place. This movement is mediated by spindle and astral microtubules, and it relies on forces generated by microtubule-associated motor proteins. When budding yeast cells express the non-cleavable cohesin subunit, Scc1-RRDD, sister chromatid separation is blocked, preventing the spindle from elongating. Thus, in the presence of Scc1-RRDD nuclear positioning is mediated solely by forces acting through astral microtubules. We have previously shown that under these conditions cells exit mitosis with the nucleus in the mother cells, and that the position of the nucleus is determined, at least in part, by the FEAR pathway, which regulates various aspects of mitotic exit. When the FEAR pathway is inactivated, cells expressing Scc1-RRDD exit mitosis with the nucleus in the daughter cells (referred to as a “daughterly phenotype”). In order to find additional proteins that participate in nuclear positioning, we screened a series of mutant strains for those that displayed a daughterly phenotype when Scc1-RRDD was expressed. The most prominent defects were seen in ase1Δ and cin8Δ mutant cells. Both Ase1p and Cin8p were previously shown to be nuclear and to be involved in spindle function. We show here that deletion of ASE1 or CIN8 causes a defect in SPB separation and leads to an abnormal number of astral microtubules and a change in their orientation within the cell. Taken together, these results suggest that in budding yeast Ase1p and Cin8p affect nuclear positioning through astral microtubule-dependent mechanisms.  相似文献   

4.
We detail here how "free" centrosomes, lacking associated chromosomes, behave during mitosis in PtK(2) homokaryons stably expressing GFP-alpha-tubulin. As free centrosomes separate during prometaphase, their associated astral microtubules (Mts) interact to form a spindle-shaped array that is enriched for cytoplasmic dynein and Eg5. Over the next 30 min, these arrays become progressively depleted of Mts until the two centrosomes are linked by a single bundle, containing 10-20 Mts, that persists for > 60 min. The overlapping astral Mts within this bundle are loosely organized, and their plus ends terminate near its midzone, which is enriched for an ill-defined matrix material. At this time, the distance between the centrosomes is not defined by external forces because these organelles remain stationary when the bundle connecting them is severed by laser microsurgery. However, since the centrosomes move towards one another in response to monastrol treatment, the kinesin-like motor protein Eg5 is involved. From these results, we conclude that separating asters interact during prometaphase of mitosis to form a spindle-shaped Mt array, but that in the absence of chromosomes this array is unstable. An analysis of the existing data suggests that the stabilization of spindle Mts during mitosis in vertebrates does not involve the chromatin (i.e., the RCC1/RanGTP pathway), but instead some other chromosomal component, e.g., kinetochores.  相似文献   

5.
The morphology of budding and conjugating cells and associated changes in microtubules and actin distribution were studied in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by phase-contrast and fluorescence microscopy. The non-budding interphase cell showed a nucleus situated in the central position and bundles of cytoplasmic microtubules either stretching parallel to the longitudinal cell axis or randomly distributed in the cell; none of these, however, had a character of astral microtubules. During mitosis, the nucleus divided in the daughter cell, cytoplasmic microtubules disappeared and were replaced by a spindle. The cytoplasmic microtubules reappeared after mitosis had finished. Actin patches were present both in the bud and the mother cell. Cells were induced to mate by transfer to ribitol- containing medium without nitrogen. Partner cells fused by conjugation projections where actin patches had been accumulated. Cell fusion resulted in a zygote that produced a basidium with parallel bundles of microtubules extended along its axis and with actin patches concentrated at the apex. The fused nucleus moved towards the tip of the basidium. During this movement, nuclear division was taking place; the nuclei were eventually distributed to basidiospores. Mitochondria appeared as vesicles of various sizes; their large amounts were found, often lying adjacent to microtubules, in the subcortical cytoplasm of both vegetative cells and zygotes.  相似文献   

6.
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN.  相似文献   

7.
Many asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis. Here, we show that beyond perturbing Kar9 distribution, activation of the spindle assembly checkpoint (SAC) randomizes SPB inheritance. Inactivation of the B-type cyclin Clb5 led to a SAC-dependent defect in Kar9 orientation and SPB segregation. Furthermore, unlike the Clb4-dependent pathway, the Clb5- and SAC-dependent pathways functioned genetically upstream of the mitotic exit network (MEN) in SPB specification and Kar9-dependent SPB inheritance. Together, our study indicates that Clb5 functions in spindle assembly and that the SAC controls the specification and inheritance of yeast SPBs through inhibition of the MEN.  相似文献   

8.
Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at 0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud.  相似文献   

9.
The microtubule (Mt) organization in apical cells of Sphacelaria rigidula. as well as in branch initials of S. rigidula and Ectocarpus siliculosus, was studied by immunofluorescence. The apical interphase cells of S. rigidula show an impressive cytoskeleton of Mts, converging on the centrosome(s). A number of Mt bundles are perinuclear, but most of them run in axial orientation from the centrosomes to the cell cortex. The anterior Mt system consists of numerous thin Mt bundles, whereas the posterior system contains fewer and thicker bundles. In cells entering prophase, the cytoplasmic Mts gradually disappear. This process is somewhat faster at the posterior than at the anterior pole of the premitotic nucleus. After mitosis, the cytoplasmic Mts of the apical region appear to be re-organized more rapidly than those of the basal part of the cell. The apical daughter nucleus retains a lobed shape and condensed chromatin for a longer time, and increases considerably in size between telophase and cytokinesis, compared to the basal one. Duplication of the centrosomes proceeds more rapidly in the anterior region of apical cells than in the basal part. During branch formation in S. rigidula and E. siliculosus, a new polarity axis is established, and the Mts extend towards the protrusion into which the nucleus migrates before mitosis. After nuclear division, one of the daughter nuclei is positioned at the tip of the branch, where the apical Mt focussing point is localized.  相似文献   

10.
The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother‐to‐daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase‐activating protein (GAP) complex Bfa1–Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1–Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1–Bub2 and Tem1 localization at the SPBs. Based on the measured SPB‐bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.  相似文献   

11.
The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5-10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is approximately 150 nm. MTs growing from duplicated but not separated SPBs have a median length of approximately 130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to approximately 300 nm and then decreases to approximately 30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.  相似文献   

12.
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the shmoo tip. We find that Kar3p, a minus end-directed kinesin motor protein, is required, whereas the other cytoplasmic motors, dynein and the kinesins Kip2p and Kip3p, are not. In the absence of Kar3p, attached microtubule plus ends released from the shmoo tip when they switched to depolymerization. Furthermore, microtubules in cells expressing kar3-1, a mutant that results in rigor binding to microtubules [2], were stabilized specifically at shmoo tips. Imaging of Kar3p-GFP during mating revealed that fluorescence at the shmoo tip increased during periods of microtubule depolymerization. These data are the first to localize the activity of a minus end-directed kinesin at the plus ends of microtubules. We propose a model in which Kar3p couples depolymerizing microtubule plus ends to the cell cortex and the Bim1p-Kar9p protein complex maintains attachment during microtubule polymerization. In support of this model, analysis of Bim1p-GFP at the shmoo tip results in a localization pattern complementary to that of Kar3p-GFP.  相似文献   

13.
Mitotic spindles were isolated from a cell division cycle mutant of the budding yeast Saccharomyces cerevisiae by the lysis of sphateroplasts on an air:buffer interface and were negatively stained with 1% gold thioglucose. Isolated spindles were incubated under conditions which promoted the sliding disintegration of parallel preparations of Tetrahymena axonemes, namely the addition of ATP to 20 microM. In no experiment was a corresponding change in microtubule organization of the spindle observed even when spindles were first pretreated with either 1-10 microgram/ml trypsin or 0.2-2% Triton X-100. During these experiments a number of spindles were isolated from cells that had passed through the imposed temperature block, and from the images obtained a detailed model of spindle formation and elongation has been constructed. Two sets of microtubules, one from each spindle pole body (SPB), completely interdigitate to form a continuous bundle, and a series of discontinuous microtubules are then nucleated by each SPB. As the spindle elongates, the number of microtubules continuous between the two SPBs decreases until, at a length of 4 micrometer, only one remains. The spindle, composed of only one microtubule, continues to elongate until it reaches the maximal nuclear dimension of 8 micrometer. The data obtained from negatively stained preparations have been verified in thin sections of wild-type cells. We suggest that, as in the later stages of mitosis only one microtubule is involved in the separation of the spindle poles, the microtubular spindle in S. cerevisiae is not a force-generating system but rather acts as a regulatory mechanism controlling the rate of separation.  相似文献   

14.
Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic gamma-tubulin complex, can only generate very short (<1 microm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions.  相似文献   

15.
During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.  相似文献   

16.
The spindle pole body (SPB) is the principal microtubule organizing center of budding and fission yeast. We have examined SPBs and their associated microtubules from both organisms, using electron microscopy and three-dimensional reconstruction techniques, to identify the structural changes that accompany progression through the cell cycle. In this report, we compare these changes in the two kinds of yeasts and present a model for how microtubules get into a closed nucleus.  相似文献   

17.
M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity.  相似文献   

18.
The cycle of spindle pole body (SPB) duplication, differentiation, and segregation in Schizosaccharomyces pombe is different from that in some other yeasts. Like the centrosome of vertebrate cells, the SPB of S. pombe spends most of interphase in the cytoplasm, immediately next to the nuclear envelope. Some gamma-tubulin is localized on the SPB, suggesting that it plays a role in the organization of interphase microtubules (MTs), and serial sections demonstrate that some interphase MTs end on or very near to the SPB. gamma-Tubulin is also found on osmiophilic material that lies near the inner surface of the nuclear envelope, immediately adjacent to the SPB, even though there are no MTs in the interphase nucleus. Apparently, the MT initiation activities of gamma-tubulin in S. pombe are regulated. The SPB duplicates in the cytoplasm during late G2 phase, and the two resulting structures are connected by a darkly staining bridge until the mitotic spindle forms. As the cell enters mitosis, the nuclear envelope invaginates beside the SPB, forming a pocket of cytoplasm that accumulates dark amorphous material. The nuclear envelope then opens to form a fenestra, and the duplicated SPB settles into it. Each part of the SPB initiates intranuclear MTs, and then the two structures separate to lie in distinct fenestrae as a bipolar spindle forms. Through metaphase, the SPBs remain in their fenestrae, bound to the polar ends of spindle MTs; at about this time, a small bundle of cytoplasmic MTs forms in association with each SPB. These MTs are situated with one end near to, but not on, the SPBs, and they project into the cytoplasm at an orientation that is oblique to the simple axis. As anaphase proceeds, the nuclear fenestrae close, and the SPBs are extruded back into the cytoplasm. These observations define new fields of enquiry about the control of SPB duplication and the dynamics of the nuclear envelope.  相似文献   

19.
Asymmetric cell division generates cell diversity and contributes to cellular aging and rejuvenation. Here, we review the molecular mechanisms enabling budding yeast to recognize spindle pole bodies (SPB, centrosome equivalent) based on their age, and guide their non‐random mitotic segregation: SPB inheritance requires the distinction of old from new SPBs and is regulated by the SPB‐inheritance network (SPIN) and the mitotic exit network (MEN). The SPIN marks the pre‐existing SPB as old and the MEN recognizes these marks translating them into spindle orientation. We next revisit other molecules and structures that partition depending on their age rather than their abundance at mitosis as, for example, DNA, centrosomes, mitochondria, and histones in yeast and other systems. The recurrence of this differential behavior suggests a functional significance for numerous cell types, which we then discuss. We conclude that non‐random segregation may facilitate asymmetric cell fate determination and thereby indirectly aging and rejuvenation. Also see the video abstract here: https://youtu.be/1sQ4rAomnWY .  相似文献   

20.
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号