首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Zigler CM  Belin TR 《Biometrics》2012,68(3):922-932
Summary The literature on potential outcomes has shown that traditional methods for characterizing surrogate endpoints in clinical trials based only on observed quantities can fail to capture causal relationships between treatments, surrogates, and outcomes. Building on the potential-outcomes formulation of a principal surrogate, we introduce a Bayesian method to estimate the causal effect predictiveness (CEP) surface and quantify a candidate surrogate's utility for reliably predicting clinical outcomes. In considering the full joint distribution of all potentially observable quantities, our Bayesian approach has the following features. First, our approach illuminates implicit assumptions embedded in previously-used estimation strategies that have been shown to result in poor performance. Second, our approach provides tools for making explicit and scientifically-interpretable assumptions regarding associations about which observed data are not informative. Through simulations based on an HIV vaccine trial, we found that the Bayesian approach can produce estimates of the CEP surface with improved performance compared to previous methods. Third, our approach can extend principal-surrogate estimation beyond the previously considered setting of a vaccine trial where the candidate surrogate is constant in one arm of the study. We illustrate this extension through an application to an AIDS therapy trial where the candidate surrogate varies in both treatment arms.  相似文献   

2.
3.
    
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.  相似文献   

4.
    
We consider studies of cohorts of individuals after a critical event, such as an injury, with the following characteristics. First, the studies are designed to measure \"input\" variables, which describe the period before the critical event, and to characterize the distribution of the input variables in the cohort. Second, the studies are designed to measure \"output\" variables, primarily mortality after the critical event, and to characterize the predictive (conditional) distribution of mortality given the input variables in the cohort. Such studies often possess the complication that the input data are missing for those who die shortly after the critical event because the data collection takes place after the event. Standard methods of dealing with the missing inputs, such as imputation or weighting methods based on an assumption of ignorable missingness, are known to be generally invalid when the missingness of inputs is nonignorable, that is, when the distribution of the inputs is different between those who die and those who live. To address this issue, we propose a novel design that obtains and uses information on an additional key variable-a treatment or externally controlled variable, which if set at its \"effective\" level, could have prevented the death of those who died. We show that the new design can be used to draw valid inferences for the marginal distribution of inputs in the entire cohort, and for the conditional distribution of mortality given the inputs, also in the entire cohort, even under nonignorable missingness. The crucial framework that we use is principal stratification based on the potential outcomes, here mortality under both levels of treatment. We also show using illustrative preliminary injury data that our approach can reveal results that are more reasonable than the results of standard methods, in relatively dramatic ways. Thus, our approach suggests that the routine collection of data on variables that could be used as possible treatments in such studies of inputs and mortality should become common.  相似文献   

5.
    
Taylor L  Zhou XH 《Biometrics》2009,65(1):88-95
Summary .  Randomized clinical trials are a powerful tool for investigating causal treatment effects, but in human trials there are oftentimes problems of noncompliance which standard analyses, such as the intention-to-treat or as-treated analysis, either ignore or incorporate in such a way that the resulting estimand is no longer a causal effect. One alternative to these analyses is the complier average causal effect (CACE) which estimates the average causal treatment effect among a subpopulation that would comply under any treatment assigned. We focus on the setting of a randomized clinical trial with crossover treatment noncompliance (e.g., control subjects could receive the intervention and intervention subjects could receive the control) and outcome nonresponse. In this article, we develop estimators for the CACE using multiple imputation methods, which have been successfully applied to a wide variety of missing data problems, but have not yet been applied to the potential outcomes setting of causal inference. Using simulated data we investigate the finite sample properties of these estimators as well as of competing procedures in a simple setting. Finally we illustrate our methods using a real randomized encouragement design study on the effectiveness of the influenza vaccine.  相似文献   

6.
    
Shepherd BE  Gilbert PB  Dupont CT 《Biometrics》2011,67(3):1100-1110
In randomized studies researchers may be interested in the effect of treatment assignment on a time-to-event outcome that only exists in a subset selected after randomization. For example, in preventative HIV vaccine trials, it is of interest to determine whether randomization to vaccine affects the time from infection diagnosis until initiation of antiretroviral therapy. Earlier work assessed the effect of treatment on outcome among the principal stratum of individuals who would have been selected regardless of treatment assignment. These studies assumed monotonicity, that one of the principal strata was empty (e.g., every person infected in the vaccine arm would have been infected if randomized to placebo). Here, we present a sensitivity analysis approach for relaxing monotonicity with a time-to-event outcome. We also consider scenarios where selection is unknown for some subjects because of noninformative censoring (e.g., infection status k years after randomization is unknown for some because of staggered study entry). We illustrate our method using data from an HIV vaccine trial.  相似文献   

7.
    
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002, Biometrics 58, 21-29), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.  相似文献   

8.
    
Summary Evaluation of HIV vaccine candidates in nonhuman primates (NHPs) is a critical step toward developing a successful vaccine to control the HIV pandemic. Historically, HIV vaccine regimens have been tested in NHPs by administering a single high dose of the challenge virus. More recently, evaluation of candidate HIV vaccines has entailed repeated low‐dose challenges, which more closely mimic typical exposure in natural transmission settings. In this article, we consider evaluation of the type and magnitude of vaccine efficacy from such experiments. Based on the principal stratification framework, we also address evaluation of potential immunological surrogate endpoints for infection.  相似文献   

9.
    
In many experiments, researchers would like to compare between treatments and outcome that only exists in a subset of participants selected after randomization. For example, in preventive HIV vaccine efficacy trials it is of interest to determine whether randomization to vaccine causes lower HIV viral load, a quantity that only exists in participants who acquire HIV. To make a causal comparison and account for potential selection bias we propose a sensitivity analysis following the principal stratification framework set forth by Frangakis and Rubin (2002, Biometrics58, 21-29). Our goal is to assess the average causal effect of treatment assignment on viral load at a given baseline covariate level in the always infected principal stratum (those who would have been infected whether they had been assigned to vaccine or placebo). We assume stable unit treatment values (SUTVA), randomization, and that subjects randomized to the vaccine arm who became infected would also have become infected if randomized to the placebo arm (monotonicity). It is not known which of those subjects infected in the placebo arm are in the always infected principal stratum, but this can be modeled conditional on covariates, the observed viral load, and a specified sensitivity parameter. Under parametric regression models for viral load, we obtain maximum likelihood estimates of the average causal effect conditional on covariates and the sensitivity parameter. We apply our methods to the world's first phase III HIV vaccine trial.  相似文献   

10.
    
Summary Given a randomized treatment Z, a clinical outcome Y, and a biomarker S measured some fixed time after Z is administered, we may be interested in addressing the surrogate endpoint problem by evaluating whether S can be used to reliably predict the effect of Z on Y. Several recent proposals for the statistical evaluation of surrogate value have been based on the framework of principal stratification. In this article, we consider two principal stratification estimands: joint risks and marginal risks. Joint risks measure causal associations (CAs) of treatment effects on S and Y, providing insight into the surrogate value of the biomarker, but are not statistically identifiable from vaccine trial data. Although marginal risks do not measure CAs of treatment effects, they nevertheless provide guidance for future research, and we describe a data collection scheme and assumptions under which the marginal risks are statistically identifiable. We show how different sets of assumptions affect the identifiability of these estimands; in particular, we depart from previous work by considering the consequences of relaxing the assumption of no individual treatment effects on Y before S is measured. Based on algebraic relationships between joint and marginal risks, we propose a sensitivity analysis approach for assessment of surrogate value, and show that in many cases the surrogate value of a biomarker may be hard to establish, even when the sample size is large.  相似文献   

11.
    
Summary .  Four major frameworks have been developed for evaluating surrogate markers in randomized trials: one based on conditional independence of observable variables, another based on direct and indirect effects, a third based on a meta-analysis, and a fourth based on principal stratification. The first two of these fit into a paradigm we call the causal-effects (CE) paradigm, in which, for a good surrogate, the effect of treatment on the surrogate, combined with the effect of the surrogate on the clinical outcome, allow prediction of the effect of the treatment on the clinical outcome. The last two approaches fall into the causal-association (CA) paradigm, in which the effect of the treatment on the surrogate is associated with its effect on the clinical outcome. We consider the CE paradigm first, and consider identifying assumptions and some simple estimation procedures; we then consider the CA paradigm. We examine the relationships among these approaches and associated estimators. We perform a small simulation study to illustrate properties of the various estimators under different scenarios, and conclude with a discussion of the applicability of both paradigms.  相似文献   

12.
    
Summary Randomized experiments are the gold standard for evaluating proposed treatments. The intent to treat estimand measures the effect of treatment assignment, but not the effect of treatment if subjects take treatments to which they are not assigned. The desire to estimate the efficacy of the treatment in this case has been the impetus for a substantial literature on compliance over the last 15 years. In papers dealing with this issue, it is typically assumed there are different types of subjects, for example, those who will follow treatment assignment (compliers), and those who will always take a particular treatment irrespective of treatment assignment. The estimands of primary interest are the complier proportion and the complier average treatment effect (CACE). To estimate CACE, researchers have used various methods, for example, instrumental variables and parametric mixture models, treating compliers as a single class. However, it is often unreasonable to believe all compliers will be affected. This article therefore treats compliers as a mixture of two types, those belonging to a zero‐effect class, others to an effect class. Second, in most experiments, some subjects drop out or simply do not report the value of the outcome variable, and the failure to take into account missing data can lead to biased estimates of treatment effects. Recent work on compliance in randomized experiments has addressed this issue by assuming missing data are missing at random or latently ignorable. We extend this work to the case where compliers are a mixture of types and also examine alternative types of nonignorable missing data assumptions.  相似文献   

13.
    
Noncompliance is a common problem in experiments involving randomized assignment of treatments, and standard analyses based on intention-to-treat or treatment received have limitations. An attractive alternative is to estimate the Complier-Average Causal Effect (CACE), which is the average treatment effect for the subpopulation of subjects who would comply under either treatment (Angrist, Imbens, and Rubin, 1996, Journal of American Statistical Association 91, 444-472). We propose an extended general location model to estimate the CACE from data with noncompliance and missing data in the outcome and in baseline covariates. Models for both continuous and categorical outcomes and ignorable and latent ignorable (Frangakis and Rubin, 1999, Biometrika 86, 365-379) missing-data mechanisms are developed. Inferences for the models are based on the EM algorithm and Bayesian MCMC methods. We present results from simulations that investigate sensitivity to model assumptions and the influence of missing-data mechanism. We also apply the method to the data from a job search intervention for unemployed workers.  相似文献   

14.
    
Wang Y  Mogg R  Lunceford J 《Biometrics》2012,68(2):617-627
Biomarkers play an increasing role in the clinical development of new therapeutics. Earlier clinical decisions facilitated by biomarkers can lead to reduced costs and duration of drug development. Associations between biomarkers and clinical endpoints are often viewed as initial evidence supporting the intended purpose. As a result, even though it is widely understood that correlation is not proof of a causal relationship, correlation continues to be used as a metric for biomarker qualification in practice. In this article, we introduce a causal correlation framework where two different types of correlations are defined at the individual level. We show that the correlation estimate is a composite of different components, and needs to be interpreted with caution when used for biomarker qualification to avoid misleading conclusions. Otherwise, a significant correlation can be concluded even in the absence of a true underlying association. We also show how the causal quantities of interest are testable in a crossover design and provide discussion on the challenges that exist in a parallel group setting.  相似文献   

15.
    
Frangakis CE  Baker SG 《Biometrics》2001,57(3):899-908
For studies with treatment noncompliance, analyses have been developed recently to better estimate treatment efficacy. However, the advantage and cost of measuring compliance data have implications on the study design that have not been as systematically explored. In order to estimate better treatment efficacy with lower cost, we propose a new class of compliance subsampling (CSS) designs where, after subjects are assigned treatment, compliance behavior is measured for only subgroups of subjects. The sizes of the subsamples are allowed to relate to the treatment assignment, the assignment probability, the total sample size, the anticipated distributions of outcome and compliance, and the cost parameters of the study. The CSS design methods relate to prior work (i) on two-phase designs in which a covariate is subsampled and (ii) on causal inference because the subsampled postrandomization compliance behavior is not the true covariate of interest. For each CSS design, we develop efficient estimation of treatment efficacy under binary outcome and all-or-none observed compliance. Then we derive a minimal cost CSS design that achieves a required precision for estimating treatment efficacy. We compare the properties of the CSS design to those of conventional protocols in a study of patient choices for medical care at the end of life.  相似文献   

16.
    
Chen H  Geng Z  Zhou XH 《Biometrics》2009,65(3):675-682
Summary .  In this article, we first study parameter identifiability in randomized clinical trials with noncompliance and missing outcomes. We show that under certain conditions the parameters of interest are identifiable even under different types of completely nonignorable missing data: that is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and moment estimators and evaluate their finite-sample properties in simulation studies in terms of bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable missing-data model has an important impact on the estimated complier average causal effect (CACE) parameter. Our new method provides some new and useful alternative nonignorable missing-data models over the existing latent ignorable model, which guarantees parameter identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and missing data.  相似文献   

17.
    
Gilbert PB  Hudgens MG 《Biometrics》2008,64(4):1146-1154
SUMMARY: Frangakis and Rubin (2002, Biometrics 58, 21-29) proposed a new definition of a surrogate endpoint (a \"principal\" surrogate) based on causal effects. We introduce an estimand for evaluating a principal surrogate, the causal effect predictiveness (CEP) surface, which quantifies how well causal treatment effects on the biomarker predict causal treatment effects on the clinical endpoint. Although the CEP surface is not identifiable due to missing potential outcomes, it can be identified by incorporating a baseline covariate(s) that predicts the biomarker. Given case-cohort sampling of such a baseline predictor and the biomarker in a large blinded randomized clinical trial, we develop an estimated likelihood method for estimating the CEP surface. This estimation assesses the \"surrogate value\" of the biomarker for reliably predicting clinical treatment effects for the same or similar setting as the trial. A CEP surface plot provides a way to compare the surrogate value of multiple biomarkers. The approach is illustrated by the problem of assessing an immune response to a vaccine as a surrogate endpoint for infection.  相似文献   

18.
    
Mehrotra DV  Li X  Gilbert PB 《Biometrics》2006,62(3):893-900
To support the design of the world's first proof-of-concept (POC) efficacy trial of a cell-mediated immunity-based HIV vaccine, we evaluate eight methods for testing the composite null hypothesis of no-vaccine effect on either the incidence of HIV infection or the viral load set point among those infected, relative to placebo. The first two methods use a single test applied to the actual values or ranks of a burden-of-illness (BOI) outcome that combines the infection and viral load endpoints. The other six methods combine separate tests for the two endpoints using unweighted or weighted versions of the two-part z, Simes', and Fisher's methods. Based on extensive simulations that were used to design the landmark POC trial, the BOI methods are shown to have generally low power for rejecting the composite null hypothesis (and hence advancing the vaccine to a subsequent large-scale efficacy trial). The unweighted Simes' and Fisher's combination methods perform best overall. Importantly, this conclusion holds even after the test for the viral load component is adjusted for bias that can be introduced by conditioning on a postrandomization event (HIV infection). The adjustment is derived using a selection bias model based on the principal stratification framework of causal inference.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号