首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a range of doses of ultraviolet irradiation (UV) to inactivate the waterborne actinospore or triactinomyxon stages (TAMs) of Myxobolus cerebralis was evaluated by infectivity for juvenile rainbow trout Oncorhynchus mykiss. TAMs were UV-irradiated using a low pressure mercury vapour lamp collimated beam apparatus. All doses 40, 80, 120 and 160 mJ cm(-2) were found to completely inactivate the TAMs as demonstrated by the absence of microscopic lesions, myxospores and parasite DNA detected by quantitative PCR (qPCR) among rainbow trout 5 mo post-exposure. In contrast, rainbow trout receiving the same concentrations of untreated TAMs (1000 fish(-1)) developed clinical signs of whirling disease at 2 mo post-exposure and had severe microscopic lesions, high myxospore counts and high qPCR values when examined at 5 mo following exposure to the parasite.  相似文献   

2.
The prevalence of infection and susceptibility of the aquatic oligochaete Tubifex tubifex to Myxobolus cerebralis, was examined in 2 studies on the upper Colorado River, Colorado, USA, where whirling disease occurs in wild trout populations. In the first study, the prevalence of infection ranged from 0.4 to 1.5%, as determined by counting the number of T. tubifex releasing triactinomyxons of M. cerebralis directly following their collection from the field. The susceptibility of those T. tubifex not releasing triactinomyxons was assessed by the number of these oligochaetes releasing triactinomyxons 3 mo following experimental exposures to spores of M. cerebralis. The prevalence of infection following experimental exposures of these T. tubifex ranged from 4.2 to 14.1%. In a second study, all T. tubifex collected at 2 different times directly from the 2 field sites in Colorado were exposed to spores of M. cerebralis. Individual oligochaetes representing those groups of T. tubifex releasing and those groups not releasing triactinomyxons at 3 mo were screened with molecular genetic markers. T. tubifex populations found at the 2 study sites consisted of 4 genetically distinct lineages that varied with respect to their susceptibility to experimental exposure to M. cerebralis. Lineages I and III contained the most oligochaetes susceptible to M. cerebralis and were the most prominent lineages at Windy Gap Reservoir, a site of high infectivity for wild rainbow trout on the upper Colorado River. In contrast, at the Breeze Bridge site which is below Windy Gap Reservoir and where M. cerebralis infections are less severe in wild trout, oligochaetes in lineages V and VI that are resistant to M. cerebralis were more prominent. These results suggest that certain habitats, such as Windy Gap Reservoir, are conducive to large and more homogenous populations of susceptible T. tubifex lineages that may serve as point sources of infection for M. cerebralis. Although not a direct objective of this study, there was no evidence of M. cerebralis infections among any oligochaetes other than those that would be classified as T. tubifex by standard morphological characteristics.  相似文献   

3.
The effects of ultraviolet (UV) irradiation on the viability of the waterborne triactinomyxon stages of Myxobolus cerebralis were evaluated by vital staining and the infectivity for juvenile rainbow trout Oncorhynchus mykiss. A dose of 1300 mWs cm-2 was required to inactivate 100% of the triactinomyxons held under a static collimated beam of UV as determined by vital staining. Juvenile rainbow trout were protected from infections with M. cerebralis when exposed to 14,000 or 1400 triactinomyxon spores per fish that had been treated with the collimating beam apparatus (1300 mWs cm-2). Among all fish receiving UV-treated triactinomyxons, none had clinical signs of whirling disease, or evidence of microscopic lesions or spores of M. cerebralis after 5 mo at water temperatures of 15 degrees C. In contrast, 100% of the fish receiving the higher dose of untreated triactinomyxons developed clinical signs of whirling disease and both microscopic signs of infection and spores were detected in all of the high and low dose trout receiving untreated triactinomyxon exposures. Two additional trials evaluated the Cryptosporidium Inactivation Device (CID) for its ability to treat flow-through 15 degrees C well water to which triactinomyxons were added over a 2 wk period. CID treatments of a cumulative dose exceeding 64,000 triactinomyxons per fish protected juvenile rainbow from infections with M. cerebralis. Rainbow trout controls receiving the same number of untreated triactinomyxons developed both microscopic lesions and cranial spore concentrations up to 10(4.6) per 1/2 head, although no signs of clinical whirling disease were observed. UV (126 mWs cm-2, collimated beam apparatus) was also effective in killing Flavobacterium psychrophilum, the agent causing salmonid bacterial coldwater disease, as demonstrated by the inability of bacterial cells to grow on artificial media following UV treatment.  相似文献   

4.
We exposed 9 wk old rainbow trout Oncorhynchus mykiss to ambient levels of Myxobolus cerebralis infectious stages at 4 sites of suspected differing infectivity in the Colorado River. Exposure was estimated by periodic filtration of river water at each exposure location. After a 32 d exposure, the fish were held in the Colorado River at a common site for over a year. Resulting infection was evaluated by the presence of clinical signs (whirling behavior, cranial deformity/exophthalmia, and black tail), severity of microscopic lesions, and myxospore counts (8, 10, 12, and 14 mo post-exposure). Two exposure sites that were immediately downstream of Windy Gap Reservoir were much higher in infectivity than the site above the reservoir or the site 26 km downstream of the reservoir. Rainbow trout exposed at those locations showed higher prevalence of clinical signs of whirling disease, more severe histological evidence of infection and higher average myxospore concentrations than those exposed above the reservoir or 26 km below the reservoir. Many more M. cerebralis actinospores were observed from water filtration at the 2 sites immediately below the reservoir compared to the other sites.  相似文献   

5.
The development of the triactinomyxon stage of Myxobolus cerebralis and release of mature spores from Tubifex tubifex were shown to be temperature dependent. In the present work, the effect of temperature over a range of 5-30 degrees C on the development and release of the triactinomyxon stages of M. cerebralis was studied. Infected T. tubifex stopped releasing triactinomyxon spores 4 days after transfer from 15 degrees C to 25 degrees C or 30 degrees C. Transmission electron microscopic examinations of the tubificids held at 25 degrees C and 30 degrees C for 3 days showed that all developmental stages degenerated and transformed to electron-dense clusters between the gut epithelial cells of T. tubifex. In contrast, tubificid worms held at 5 degrees C and 10 degrees C examined at the same time were heavily infected with many early developmental stages of triactinomyxon. At 15 degrees C, the optimal temperature for development, maturing and mature stages of the parasite were evident. Infected T. tubifex transferred from 15 degrees C to 20 degrees C stopped producing triactinomyxon spores after 15 days. However, 15 days at 20 degrees C was not sufficient to destroy all developmental stages of the parasite. When the tubificid worms were returned to 15 degrees C, the one-cell stages and the binucleate-cell stages resumed normal growth. It was also demonstrated that T. tubifex cured of infection by holding at 30 degrees C for 3 weeks and shifted to 15 degrees C could be re-infected with M. cerebralis spores. The waterborne triactinomyxon spores of M. cerebralis did not appear to be as short-lived as previously reported. More than 60% of experimentally produced waterborne triactinomyxon spores survived and maintained their infectivity for rainbow trout for 15 days at water temperatures up to 15 degrees C. In natural aquatic systems, the triactinomyxon spores may survive and keep their infectivity for periods even longer than 15 days.  相似文献   

6.
The data concerning biological peculiarities of spores of Myxosoma cerebralis obtained by the author and other researchers are summarized. The life cycle of M. cerebralis is well adapted to the seasonal cycle of the host owing to the fact that the infectivity of the spores is attained only after 4 months of aging in water and that the spores are highly resistive to freezing and drying. No sexual process during 4 month aging was observed. It is supposed that the maturity of spores depends to a great extent on the ability of polar capsules for extrusion.  相似文献   

7.
Validation of a single round PCR-based assay to confirm as Myxobolus cerebralis myxospores obtained from pepsin-trypsin digest preparations is described. The assay is a modification of a PCR assay published previously, based on the amplification of a segment of the gene encoding the 18S ribosomal subunit of M. cerebralis. The sensitivity, specificity and upper and lower detection limits were determined using known M. cerebralis and non-M. cerebralis myxospores and M. cerebralis-free fish. The sensitivity of PCR confirmation was 100% (95% confidence interval of 83.2-100%). The specificity was 100% (95% confidence interval of 87.2-100%). The upper detection limit was approximately 100,000 myxospores per reaction; the lower detection limit was approximately 50 myxospores per reaction. Given the high sensitivity and specificity of the assay, substitution of this assay for histologic confirmation of M. cerebralis infection is encouraged.  相似文献   

8.
Myxobolus cerebralis, the myxozoan parasite responsible for whirling disease in salmonid fishes, has a complex life-cycle involving an invertebrate host and 2 spore stages. Water flow rate is an environmental variable thought to affect the establishment and propagation of M. cerebralis; however, experimental data that separates flow effects from those of other variables are scarce. To compare how this parameter affected parasite infection dynamics and the invertebrate and vertebrate hosts, dead, infected fish were introduced into a naive habitat with susceptible hosts under 2 experimental flow regimes: slow (0 x 02 cm/s) and fast (2 x 0 cm/s). Throughout the 1-year study, uninfected fry were held in both systems, the outflows were screened weekly for spores and the annelid populations were monitored. We found clear differences in prevalence of infection in the worms, prevalence and severity of infection in the fish, and host survival. Both flows provided environments in which M. cerebralis could complete its life-cycle; however, both the parasite and its invertebrate host proliferated to a greater extent in the slow flow environment over the 1-year study period. This finding is of significance for aquatic systems where the flow rate can be manipulated, and should be incorporated into risk analysis assessments.  相似文献   

9.
To evaluate the effectiveness of UV irradiation in inactivating Cryptosporidium parvum oocysts, the animal infectivities and excystation abilities of oocysts that had been exposed to various UV doses were determined. Infectivity decreased exponentially as the UV dose increased, and the required dose for a 2-log(10) reduction in infectivity (99% inactivation) was approximately 1.0 mWs/cm(2) at 20 degrees C. However, C. parvum oocysts exhibited high resistance to UV irradiation, requiring an extremely high dose of 230 mWs/cm(2) for a 2-log(10) reduction in excystation, which was used to assess viability. Moreover, the excystation ability exhibited only slight decreases at UV doses below 100 mWs/cm(2). Thus, UV treatment resulted in oocysts that were able to excyst but not infect. The effects of temperature and UV intensity on the UV dose requirement were also studied. The results showed that for every 10 degrees C reduction in water temperature, the increase in the UV irradiation dose required for a 2-log(10) reduction in infectivity was only 7%, and for every 10-fold increase in intensity, the dose increase was only 8%. In addition, the potential of oocysts to recover infectivity and to repair UV-induced injury (pyrimidine dimers) in DNA by photoreactivation and dark repair was investigated. There was no recovery in infectivity following treatment by fluorescent-light irradiation or storage in darkness. In contrast, UV-induced pyrimidine dimers in the DNA were apparently repaired by both photoreactivation and dark repair, as determined by endonuclease-sensitive site assay. However, the recovery rate was different in each process. Given these results, the effects of UV irradiation on C. parvum oocysts as determined by animal infectivity can conclusively be considered irreversible.  相似文献   

10.
Oligochaetes, triactinomyxons (TAMs), and age-0 trout were sampled in the upper Cache la Poudre River, Colorado, to determine the distribution of Myxobolus cerebralis during 1997 and 1998. Densities of the intermediate host, the oligochaete Tubifex tubifex, were 3.5 orders of magnitude higher in the M. cerebralis-infected Poudre Rearing Unit (PRU) trout rearing ponds than at any of the river sampling reaches. Oligochaetes, including T. tubifex, were rare in the river (1 oligochaete m(-2)), except in a few stream side alcoves and eddies (50 oligochaete m(-2)). Species composition of oligochaetes in the river reaches was more diverse than in the PRU. Tubifex tubifex constituted 50% or less of the oligochaete community in the river and 98% in the PRU. Infection rates of T tubifex were 1% in the area above the PRU, 2% in the PRU, and 6% below the PRU. An increased M. cerebralis intensity of infection in age-0 trout below the PRU could not be attributed entirely to the high numbers of TAMs in its effluent (3.7 TAMs l(-1)). Low densities of TAMs ranging from 0 to 0.2 TAMs l(-1) were found in the river reaches, yet nearly all of the age-0 trout were infected soon after emergence. This suggests that very few TAMs, as measured by filtration, need be present in the water column to bring about infection in the majority of trout present. This also indicates that the parasite can persist and potentially cause reduced juvenile trout recruitment in cold, oligotrophic, sediment poor, high-gradient streams.  相似文献   

11.
Xenotropic murine leukemia virus-related virus (XMRV) represents a novel γ-retrovirus that is capable of infecting human cells and has been classified as a biosafety level 2 (BSL-2) organism. Hence, XMRV represents a potential risk for personnel in laboratories worldwide. Here, we measured the stability of XMRV and its susceptibility to alcohol-based disinfectants. To this end, we exposed an infectious XMRV reporter virus encoding a secretable luciferase to different temperatures, pH values, and disinfectants and infected XMRV-permissive Raji B cells to measure residual viral infectivity. We found that 1 min treatment of XMRV particles at 60°C is sufficient to reduce infectivity by 99.9%. XMRV infectivity was maximal at a neutral pH but was reduced by 86% at pH 4 and 99.9% at pH 10. The common hand and surface disinfectants ethanol and isopropanol as well as the cell fixation reagent paraformaldehyde abrogated XMRV infectivity entirely, as indicated by a reduction of infectivity exceeding 99.99%. Our findings provide evidence of specific means to inactivate XMRV. Their application will help to prevent unintended XMRV contamination of cell cultures in laboratories and minimize the risk for laboratory personnel and health care workers to become infected with this biosafety level 2 organism.  相似文献   

12.
We have investigated the mechanism for the low infectivity of vesicular stomatitis virus (VSV) released from interferon (IFN) -treated cells. With 10-30 units/ml of IFN there was an approximately 5-30 fold reduction in the production of virus particles, as measured by VSV proteins; however, the infectivity of the VSV released from IFN-treated mouse LB, JLS-V9R, or human GM2504 was drastically reduced (2 to 4 logs). The low infectivity of VSV was directly related to a deficiency in virion glycoprotein (G). IFN treatment did not change the specific infectivity of the VSV particles released by HeLa cells; their G protein was also not reduced. A further effect of IFN to reduce the amount of virion M protein appeared to be secondary and was probably not related to the reduced infectivity of VSV.  相似文献   

13.
Molluscum contagiosum virus propagated in FL cells of human amnion origin has a one-step growth cycle time of 12 to 14 h. The appearance and exponential increase of intracellular virus preceded the release of extracellular virus by approximately 2 h. Demonstration of comparable titers of extracellular and intracellular virus at the end of the replication cycle indicated that a substantial amount of virus remained associated with cells exhibiting cytopathogenic changes. Mean buoyant density values of virus in sucrose ranged from 1.275 to 1.278 g/cm3, but in CsCl the virus banded at densities at 1.325 to 1.340 and 1.261 to 1.281 g/cm3. Although virus infectivity was not affected by high concentrations of CsCl, it was found by polyacrylamide gel electrophoresis that the salt removed several nonglycosylated polypeptides with estimated molecular weights of 15,000 to 60,000. This suggested that the high-density band (1.325 to 1.340) may reflect the loss of these structural components. The half-life of virus infectivity was approximately 26.5 h at 26 degrees C and 11.2 h at 37 degrees C. Although the virus was rapidly inactivated at 50 degrees C, it could be stabilized at this temperature by the presence of 1.0 M MgCl2. Virus did not agglutinate newborn chick, adult chicken, or type "0" human erythrocytes. Virus infectivity was found to be sensitive to acid pH but resistant to treatment with diethyl ether or chloroform. The replication of molluscum virus in FL cells was not inhibited by 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, or cytosine arabinonucleoside in noncytotoxic concentrations of 200 to 400 mug/ml, but greater than 99% reduction in the yield of herpes simplex virus or vaccinia virus in FL cells was obtained with 200 mug of these compounds per ml. Guanidinium chloride in concentrations of 100 to 200 mug/ml reduced molluscum virus yields by more than 99.9%.  相似文献   

14.
This study describes the development of a TaqMan real-time quantitative polymerase chain reaction (QPCR) technique using the heat-shock protein 70 (Hsp 70) and 18S ribosomal DNA (18S rDNA) sequences to identify Myxobolus cerebralis and attempt to quantify infection severity within rainbow trout fry Oncorhynchus mykiss. Rainbow trout for this study were exposed to M. cerebralis under natural river conditions and examined for infection by histology, polymerase chain reaction (PCR) and QPCR analysis at 900 Celsius temperature units (CTUs) following exposure. Detection sensitivity by QPCR was shown to be equal to traditional PCR but greater than histopathology. Primer/probe combinations developed for this study were capable of specifically detecting M. cerebralis DNA in infected fish tissue and single triactinomyxon (TAM) spores with a sensitivity of 12.5 and 6.3 pg microl(-1) of DNA for the Hsp 70 and 18S rDNA sequences, respectively. A strong relationship between QPCR and infection severity was found for the Hsp 70 probe when parasite copy number and histology scores of 0-4 were compared (R2 = 0.96, p = 0.003). However, a reduction in copy number was observed at higher histology scores for the 18S probe (scores of 4 and 5) and the Hsp 70 probe (score of 5). The results of this study demonstrate that QPCR analysis is an effective tool for detecting M. cerebralis in fish tissue and may provide a relative indication of infection severity.  相似文献   

15.
The effect of soil water content on Rotylenchulus reniformis infectivity of ''Lee'' soybean roots was investigated in an autoclaved sandy clay loam. Nematodes were introduced into soil masses maintained at constant soil water levels ranging from 3.4 to 19% by weight. Seedling growth and the soil water content-water potential relationships of the soil were determined. Nematode infectivity was greatest when the soil water content was maintained just below field capacity in the 7.2 (-1/3 bar) to 13.0% (-1/7 bar) ranges. Nematode invasion of roots was reduced in the wetter 15.5 (-1/10 bar) to 19.0% (-1 /2 0 bar) soil moisture ranges and in the dryer 3.4 (-15 bar) to 5.8% (-3/4 bar) soil moisture ranges.  相似文献   

16.
Myxobolus cerebralis is a microscopic metazoan parasite (Phylum Myxozoa: Myxosporea) associated with salmonid whirling disease. There are currently no vaccines to minimise the serious negative economical and ecological impacts of whirling disease among populations of salmonid fish worldwide. UV irradiation has been shown to effectively inactivate the waterborne infective stages or triactinomyxons of M. cerbralis in experimental and hatchery settings but the mechanisms by which the parasite is compromised are unknown. Treatments of triactinomyxons with UV irradiation at doses from 10 to 80 mJ/cm(2) either prevented (20-80 mJ/cm(2)) or significantly inhibited (10 mJ/cm(2)) completion of the parasite life cycle in experimentally exposed juvenile rainbow trout (Oncorhynchus mykiss). However, even the highest doses of UV irradiation examined (80 mJ/cm(2)) did not prevent key steps in the initiation of parasite infection, including attachment and penetration of the epidermis of juvenile rainbow trout as demonstrated by scanning electron and light microscopy. Furthermore, replication of UV-treated parasites within the first 24h following invasion of the caudal fin was suggested by the detection of concentrations of parasite DNA by quantitative PCR comparable to that among fish exposed to an equal concentration of untreated triactinomyxons. Subsequent development of parasites treated with an 80 mJ/cm(2) dose of UV irradiation however, was impaired as demonstrated by the decline and then lack of detection of parasite DNA; a trend beginning at 10 days and continuing thereafter until the end of the study at 46 days post parasite exposure. Treatments of triactinomyxons with a lower dose of UV irradiation (20 mJ/cm(2)) resulted in a more prolonged survival with parasite DNA detected, although at very low concentrations, in fish up to 49 days post parasite exposure. The successful invasion but only short-term survival of parasites treated with UV in rainbow trout resulted in a protective response to challenges with fully infective triactinomyxons. Prior treatments of juvenile rainbow trout with UV-treated triactinomyxons (10 and 20 mJ/cm(2)) resulted in a reduced prevalence of infection and significantly lower concentrations of cranial myxospores (two direct measures of the severity of whirling disease) compared with trout receiving no prior treatments when assessed 5 months post parasite exposure to fully infective triactinomyxons.  相似文献   

17.
The impact of pulsed Nd:YAG (neodymium-doped yttrium/aluminium garnet) laser irradiation on the marine biofilm-forming bacteria Pseudoalteromonas carrageenovora during two growth stages (log phase and stationary phase) and under two stresses (reduced temperature and nutrient limitation) was investigated. Bacteria were exposed to a laser fluence of 0.1 J x cm(-2) for 5, 10, and 15 min with a peak power of 20 MW x cm(-2), a pulse width of 5 ns, and an average power of 1 W x cm(-2) with a repetition rate of 10 Hz. The mortality of bacteria immediately after the irradiation as well as after a set period of time was determined. Mortality was higher among log-phase bacteria (72%) than bacteria in the stationary phase (51%) and those grown under nutrient limitation (51%). Bacteria grown at reduced temperature had a mortality of 49%. However, the differences in cell density of log-phase, stationary-phase, nutrient-limited, and low-temperature irradiated samples compared with controls after 5 h of incubation were 96, 93, 94, and 86%, respectively. The mortality values suggest that the same laser fluence has different degrees of effectiveness, depending on the physiological state of the bacteria.  相似文献   

18.
The ex vivo and in vivo reactivation of Giardia muris cysts and Cryptosporidium parvum oocysts after exposure to different doses of ultraviolet (UV) radiation was determined using animal infectivity. The infectivity of UV-treated parasites stored for 1-4 days (G. muris) or 1-17 days (C. parvum) at room temperature in the dark was similar to that of organisms administered immediately after UV treatment, indicating that the parasites did not reactivate ex vivo. In contrast, we observed in vivo reactivation of G. muris in three of seven independent animal infectivity experiments, when parasites were treated with relatively low doses of medium-pressure UV (<25 mJ/cm(2)). Our observations indicate that G. muris cysts and C. parvum oocysts exposed to medium-pressure UV doses of 60 mJ/cm(2) or higher did not exhibit resistance to and/or reactivation following treatment. This suggests that when appropriate doses of UV are used, significant and permanent inactivation of these parasites may be achieved.  相似文献   

19.
It is known that Myxobolus cerebralis antigens, both surficial and secreted, are key modulators for, or targets of, host immune system compounds. We undertook SDS-PAGE glycoprotein characterisation of M. cerebralis developmental stages isolated from infected rainbow trout and Western blot analyses using selected biotin-labelled plant lectins (GSA-I, PHA-E, SJA, GSA-II) and anti-triactinomyxon polyclonal antibodies. Glycoproteins were isolated with lectin-affinity chromatography, and prominent bands were characterised by matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI/MS). We identified glycoproteins of M. cerebralis myxospores that contained carbohydrate motifs reactive with Phaseolus vulgaris erythroagglutinin (proteins 20 to 209 kDa, PHA-E), Sophora japonica agglutinin (proteins 7 to 70 kDa, SJA), Griffonia simplicifolia Agglutinin I (proteins 10 to 209 kDa, GSA-I) and G. simplicifolia Agglutinin II (proteins 5 to 40 kDa, GSA-II). Mcgp33, a glycoprotein isolated by lectin-affinity chromatography, was reactive with SJA (about 33 kDa). Antiserum produced against M. cerebralis triactinomyxons was found to have differences in the antigenicity of isolated glycoproteins from both M. cerebralis myxospores and actinospores. We also demonstrated modified antigen expression, especially involving the glycoprotein Mcgp33, in different developmental stages of M. cerebralis.  相似文献   

20.
In experiments during 1983–86 take-all was more severe and eyespot and sharp eyespot less frequent in 2nd-4th crops of winter wheat at Woburn (Beds.) than at Rothamsted (Herts.). Third crops had most take-all and yielded least grain. Against this background, small plots, 37 cm × 31 cm, in which all plants were sampled, were tried as a means of increasing experimental precision. They were arranged in fours in incomplete blocks and blocks with complementary treatments (putative controls of take-all) were paired. Thirty of these block-pairs were distributed throughout each experimental site in each year to provide one replicate of the design for each of three sampling times: April, June and August. Unattributed variation in disease and plant growth for plots within blocks was compared to that in other strata (block-pairs and blocks within block-pairs) of the experiment. The variability amongst block-pairs scattered throughout the site was nearly always greater than that for blocks within block-pairs (98% of take-all assessments, 71% of soil infectivity estimates, 94% of eyespot and sharp eyespot assessments and 86% of all plant measurements). The variability of blocks within block-pairs exceeded that of plots much less frequently (56% and 69% of take-all assessments, 33% and 25% of soil infectivity measurements, 63% and 56% of eyespot and sharp eyespot assessments and 50% and 63% of plant measurements; Rothamsted and Woburn, respectively). Small plots were judged mostly on this last comparison, where a variance ratio in excess of 1 indicated that the small plots had decreased variability and increased precision. Variance ratios for different assessments of take-all indicates that small plots: i) most consistently decreased disease variability during the years of maximum disease, ii) were slightly less effective at Rothamsted than at Woburn, and iii) were usually less effective in fourth crops than in previous crops. Soil infectivity was most uniform after crops with most disease and blocks were rarely more variable than plots. hxcept when disease was severe, soil infectivity in August tended to be positively associated with the yield of the crop just harvested. These findings reveal changes in the scale of disease patterns, both during the crop sequence and within individual crops, and suggest more than one scale of pattern in take-all-infested fields. This is discussed in relation to field experimentation and take-all decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号