首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary In the lac operon, the existence of a secondary repressor binding site, inside Z gene, had been inferred from in vitro binding studies (Reznikoff et al., 1974; Gilbert et al., 1975).A serie of deletions have been constructed from a lac transducing bacteriophage. Some of those deleted bacteriophages have still the property of derepressing a chromosomal lac operon, even though they do not contain any more the lac operator. This phenomenon is an indication that the secondary repressor binding site is also active in vivo.  相似文献   

3.
Yudkin MD 《FEBS letters》1970,10(3):156-158
Experiments have been done to show whether the lac promoter delection L1, which partly alleviates catabolite repression, also affects transient repression of lac. In stain L1/F'M15 all of the beta-galactosidase is synthesized from a chromosomal gene cis to L1, whereas 98% of the thiogalactosidase transacetylase is synthesized from an episomal gene cis to an intact i-p-o region. The addition of glucose to induced cultures of strain L1/F'M15 growing in glycerol medium caused extensive transient repression of transacetylase but almost no transient repression of beta-galactosidase. In control experiments with a diploid stain of genotype p(+)z(+)a(-)/F'p(+)z(-)a(+) the two enzymes suffered equal transient repression. Thus L1 substantially relieves transient repression.  相似文献   

4.
We have constructed a system which allows systematic testing of repressor--operator interactions. The system consists of two plasmids. One of them carries a lac operon in which lac operator has been replaced by a unique restriction site into which synthetic operators can be cloned. The other plasmid carries the gene coding for the repressor, in our case a semisynthetic lacI gene of which parts can be exchanged in a cassette-like manner. A galE host allows us to select for mutants which express repressors with altered specificities. Here we report the change of specificity in the lac system by changing residues 1 and 2 of the recognition helix of lac repressor. The specificity changes are brought about cooperatively by the change of both residues. Exchanges of just one residue broaden the specificity. Our results hint that the recognition helix of lac repressor may possibly have the opposite orientation to those in Lambda cro protein or 434 CI repressor.  相似文献   

5.
Lac repressor headpiece (HP) and intact lac repressor have been studied using the photo-CIDNP method. At neutral pH histidine 29, tyrosines 7, 12 and 17 and methionine 1 are polarised. His-29 polarizations are weaker and broader in HP59 than in HP51 indicating that the C-terminal octapeptide in HP59 adopts a conformation that allows an interaction with His-29. The photo-CIDNP spectra of intact lac repressor and HP51 are very similar, showing that the same residues are accessible to the photo-excited flavin. An equimolar mixture of HP51 and a 14 base pair lac operator fragment strongly suppresses the photo-CIDNP effect of tyrosines 7 and 17 and abolishes the His-29 polarizations. The results are compared with earlier photo-CIDNP measurements on a complex of headpiece with poly[d(AT)] and with a model derived from a 2D NMR study on a lac headpiece-operator complex.  相似文献   

6.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

7.
8.
The galactoside acetyltransferase (thiogalactoside transacetylase) of Escherichia coli (GAT, LacA, EC 2.3.1.18) is a gene product of the classical lac operon. GAT may assist cellular detoxification by acetylating nonmetabolizable pyranosides, thereby preventing their reentry into the cell. The structure of GAT has been solved in binary complexes with acetyl-CoA or CoA and in ternary complexes with CoA and the nonphysiological acceptor substrates isopropyl beta-D-thiogalactoside (IPTG) or p-nitrophenyl beta-D-galactopyranoside (PNPbetaGal). A hydrophobic cleft that binds the thioisopropyl and p-nitrophenyl aglycones of IPTG and PNPbetaGal may discriminate against substrates with hydrophilic substituents at this position, such as lactose, or inducers of the lac operon. An extended loop projecting from the left-handed parallel beta helix domain contributes His115, which is in position to facilitate attack of the C6-hydroxyl group of the substrate on the thioester.  相似文献   

9.
Few proteins have had such a strong impact on a field as the lac repressor has had in Molecular Biology. Over 40 years ago, Jacob and Monod [Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3 (1961) 318] proposed a model for gene regulation, which survives essentially unchanged in contemporary textbooks. It is a cogent depiction of how a set of 'structural' genes may be coordinately transcribed in response to environmental conditions and regulates metabolic events in the cell. In bacteria, the genes required for lactose utilization are negatively regulated when a repressor molecule binds to an upstream cis activated operator. The repressor and its operator together form a genetic switch, the lac operon. The switch functions when inducer molecules alter the conformation of the repressor in a specific manner. In the presence of a particular metabolite, the repressor undergoes a conformational change that reduces its affinity for the operator. The structures of the lac repressor and its complexes with operator DNA and effector molecules have provided a physical platform for visualizing at the molecular level the different conformations the repressor and the molecular basis for the switch. The structures of lac repressor, bound to its operator and inducer, have also been invaluable for interpreting a plethora of biochemical and genetic data.  相似文献   

10.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

11.
NMR study of the interaction between the lac repressor and the lac operator   总被引:1,自引:0,他引:1  
Binding of the lac repressor headpiece, the N-terminal region of the lac repressor, to the lac operator of Escherichia coli was studied by 1H-NMR spectroscopy. Two DNA fragments, of 51 base pairs and 62 base pairs, containing the lac operator region, were investigated. The signals of their hydrogen-bonded imino protons were well resolved in the 500-MHz NMR spectra. The spectra of the free lac operator DNA are similar to those obtained from ring-current-shift calculations for a B-DNA structure. Complex formation with the headpiece led to small but nevertheless characteristic changes in the spectra. The fact that very few imino resonances shifted upon addition of headpiece, as well as the variety in direction and size of these chemical shifts, indicate the formation of a specific complex between the lac repressor and the lac operator. The observed changes in the resonance positions exclude the intercalation of tyrosine residues of the headpiece between adjacent base pairs of the lac operator as well as the formation of a cruciform structure. They rather reflect a small conformational transition in the DNA itself, caused for example by an alteration in the tilt of a few base pairs or a shift of the keto-enol tautomeric equilibrium of the bases towards the enolic form.  相似文献   

12.
The interaction between the lac repressor headpiece and a small operator DNA fragment has been examined by fluorescence and circular dichroism (c.d.) measurements. Binding of the headpiece to the DNA fragment induces a strong quenching of the fluorescence of its tyrosine residues. Quantitative analysis of the fluorescence data demonstrates that, in a first step, two headpieces bind very strongly to the DNA fragment then weaker binding occurs. C.d. demonstrates that the binding induces conformational changes of the DNA. The c.d. change produced upon binding of the first two headpieces differs from that induced upon binding of two further headpieces . Binding of the second pair of headpieces is similar to non-specific binding to non-operator DNA. The conformation of the operator DNA in the presence of two headpieces differs drastically from that in presence of lac repressor. Addition of the core to the lac operator does not induce any conformational change of the nucleic acids. These results are discussed with respect to the relative roles of core and headpieces in the lac repressor-lac operator interaction.  相似文献   

13.
The complex formation of the N-terminal domain (headpiece) of the Escherichia coli lac repressor and a synthetic 14-base-pair lac operator fragment has been investigated by 1H NMR. Titration shifts in the imino-proton region of the DNA spectrum and in the aromatic region of the headpiece spectrum are examined in detail and interpreted where possible. The assignment of the resonances in the complex follows in part from the titration data and is completed by nuclear Overhauser measurements. The shift of the His-29 C-2 resonance has been used to assess the binding strength of the complex. Evidence is presented for the presence of a high-affinity site on the lac operator fragment (KD less than or equal to 2 X 10(-5) M), which shows features in common with one of the specific binding sites on the complete lac operator, and for the presence of a second, nonspecific binding site with lower affinity. The influence of this second site on the interpretation of the binding data is discussed.  相似文献   

14.
We have shown previously that lac repressor binds specifically and quantitatively to lac operator restriction fragments which have been complexed with histones to form artificial nucleosomes (203 base pair restriction fragment) or core particles (144 base pair restriction fragment. We describe here a quantitative method for determining the equilibrium binding affinities of repressor for these lac reconstitutes. Quantitative analysis shows that the operator-histone reconstitutes may be grouped into two affinity classes: those with an affinity for repressor close to that of naked DNA and those with an affinity 2 or more orders of magnitude less than that of naked DNA. All particles in the lac nucleosome preparations bind repressor with high affinity, but the lac core particle preparations contain particles of both high and low affinities for repressor. Formaldehyde cross-linking causes all high-affinity species to suffer a 100-fold decrease in binding affinity. In contrast, there is no effect of cross-linking on species of low affinity. Therefore, the ability of a particle to be bound tightly by repressor depends on a property of the particle which is eliminated by cross-linking. Control experiments have shown that chemical damage to the operator does not accompany cross-linking. Therefore, the property sensitive to cross-linking must be the ability of the particle to change conformation. We infer that the particles of low native affinity, like cross-linked particles, are of low affinity because of an inability to facilitate repressor binding by means of this conformational change. Dimethyl suberimidate cross-linking experiments show that histone-histone cross-linking is sufficient to preclude high-affinity binding. Thus, the necessary conformational change involves a nucleosome histone core event. We find that the ability of a particle to undergo a repressor-induced facilitating conformational change appears to depend on the position of the operator along the DNA binding path of the nucleosome core. We present a general model which proposes that nucleosomes are divided into domains which function differentially to initiate conformational changes in response to physiological stimuli.  相似文献   

15.
16 single-site mutations and a 1-bp deletion in the lac operator have been cloned and examined with regard to repressor binding. A 13-bp, central ‘core’ operator sequence, bp 5–17 of the natural operator, was also synthesized and cloned. Repressor affinity was assessed in vivo by quantitating the level of β-galactosidase activity resulting from chromosomal operon derepression and in vitro by measuring the stability of repressor-operator complexes. Our results support the general conclusion that the repressor-operator interaction is asymmetric, particularly across the center of the operator sequence, with little or no specific contact at position 12. Some sequence changes in the right side of the operator markedly reduced repressor affinity, indicating that although binding to this half of the sequence has been suggested to be less important than the left half, it still significantly contributes to the binding affinity.  相似文献   

16.
Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may be useful to study the emergence of multistability in biological systems other than the lac operon.  相似文献   

17.
Out of the first 62 residues of the lac repressor, 38 positions have been substituted by at least one amino acid exchange. The total number of replacements in this region is 131. Data from several studies are considered.  相似文献   

18.
1. Several lac diploid strains of Escherichia coli were constructed and tested to discover whether mutations in the lac promoter alleviate catabolite repression. 2. In each of these diploids the chromosome carries one of the promoter mutations, L8, L29 or L1; so that the rate of synthesis of the enzymes of the lac operon is only 2-6% of the fully induced wild-type. Each diploid harbours the episome F'lacM15 that specifies the synthesis of thiogalactoside transacetylase under the control of intact regulator, promoter and operator regions, but has a deletion in the structural gene for beta-galactosidase. In each diploid more than 90% of the thiogalactoside transacetylase is synthesized from the episome, and 100% of the beta-galactosidase is synthesized from the chromosome, and comparison of the extent of catabolite repression that the two enzymes suffered indicated whether the chromosomal promoter mutation relieves catabolite repression. 3. In the strains in which the promoter carries either of the point mutations L8 or L29 the enzymes were equally repressed, suggesting that neither L8 nor L29 affects catabolite repression. 4. In a diploid strain harbouring the same episome but carrying deletion L1 on the chromosome, synthesis of beta-galactosidase suffered much less repression than that of thiogalactoside transacetylase. 5. In a diploid strain in which the chromosome carries L1 and also a second mutation that increases the rate of expression of lac to that permitted by L8 or L29, the synthesis of beta-galactosidase again suffered much less repression than the synthesis of thiogalactoside transacetylase. 6. The effect of L1 (which deletes the boundary between the i gene and the lac promoter) is ascribed to its bringing the expression of lac under the control of the promoter of the i gene. 7. Even in strains carrying L1, some catabolite repression persists; this is not due to a trans effect from the episome since it occurs equally in a haploid strain with L1.  相似文献   

19.
20.
Polycistronic Effects of Catabolite Repression on the lac Operon   总被引:2,自引:2,他引:0       下载免费PDF全文
The catabolite repression caused by glucose and glucose-6-phosphate has been studied for both beta-galactosidase and thiogalactoside transacetylase, the products of the operator proximal and distal cistrons of the lac operon, respectively. We find that both cistrons are affected coordinately by this form of repression. We also find that a single alteration at the lac promoter region is sufficient to abolish sensitivity to repression of both cistrons. From this, we conclude that there is only one target site for catabolite repression in the lac operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号