首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooperative unfolding penalties are calculated by statistically evaluating an ensemble of denatured states derived from native structures. The ensemble of denatured states is determined by dividing the native protein into short contiguous segments and defining all possible combinations of native, i.e., interacting, and non-native, i.e., non-interacting, segments. We use a novel knowledge-based scoring function, derived from a set of non-homologous proteins in the Protein Data Bank, to describe the interactions among residues. This procedure is used for the structural identification of cooperative folding cores for four globular proteins: bovine pancreatic trypsin inhibitor, horse heart cytochrome c, French bean plastocyanin, and staphylococcal nuclease. The theoretical folding units are shown to correspond to regions that exhibit enhanced stability against denaturation as determined from experimental hydrogen exchange protection factors. Using a sequence similarity score for related sequences, we show that, in addition to residues necessary for enzymatic function, those amino acids comprising structurally important folding cores are also preferentially conserved during evolution. This implies that the identified folding cores may be part of an array of fundamental structural folding units.  相似文献   

2.
In this study, we carried out a comparative analysis between two classical methodologies to prospect residue contacts in proteins: the traditional cutoff dependent (CD) approach and cutoff free Delaunay tessellation (DT). In addition, two alternative coarse-grained forms to represent residues were tested: using alpha carbon (CA) and side chain geometric center (GC). A database was built, comprising three top classes: all alpha, all beta, and alpha/beta. We found that the cutoff value at about 7.0 A emerges as an important distance parameter. Up to 7.0 A, CD and DT properties are unified, which implies that at this distance all contacts are complete and legitimate (not occluded). We also have shown that DT has an intrinsic missing edges problem when mapping the first layer of neighbors. In proteins, it may produce systematic errors affecting mainly the contact network in beta chains with CA. The almost-Delaunay (AD) approach has been proposed to solve this DT problem. We found that even AD may not be an advantageous solution. As a consequence, in the strict range up to 7.0 A, the CD approach revealed to be a simpler, more complete, and reliable technique than DT or AD. Finally, we have shown that coarse-grained residue representations may introduce bias in the analysis of neighbors in cutoffs up to 6.8 A, with CA favoring alpha proteins and GC favoring beta proteins. This provides an additional argument pointing to the value of 7.0 A as an important lower bound cutoff to be used in contact analysis of proteins.  相似文献   

3.
The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.  相似文献   

4.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   

5.
6.
Fasciclin III is an integral membrane protein expressed on a subset of axons in the developing Drosophila nervous system. It consists of an intracellular domain, a transmembrane region, and an extracellular region composed of three domains, each predicted to form an immunoglobulin-like fold. The most N-terminal of these domains is expected to be important in mediating cell-cell recognition events during nervous system development. To learn more about the structure/function relationships in this cellular recognition molecule, a model structure of this domain was built. A sequence-to-structure alignment algorithm was used to align the protein sequence of the fasciclin III first domain to the immunoglobulin McPC603 structure. Based on this alignment, a model of the domain was built using standard homology modeling techniques. Side-chain conformations were automatically modeled using a rotamer search algorithm and the model was minimized to relax atomic overlaps. The resulting model is compact and has chemical characteristics consistent with related globular protein structures. This model is a de novo test of the sequence-to-structure alignment algorithm and is currently being used as the basis for mutagenesis experiments to discern the parts of the fasciclin III protein that are necessary for homophilic molecular recognition in the developing Drosophila nervous system.  相似文献   

7.
The structural and functional consequences of replacing omega-loop A (residues 18-32) in yeast iso-1-cytochrome c with the corresponding loop of Rhodospirillum rubrum cytochrome c2 have been examined. The three-dimensional structure of this loop replacement mutant RepA2 cytochrome c, and a second mutant RepA2(Val 20) cytochrome c in which residue 20 was back substituted to valine, were determined using X-ray diffraction techniques. A change in the molecular packing is evident in the RepA2 mutant protein, which has a phenylalanine at position 20, a residue considerably larger than the valine found in wild-type yeast iso-1-cytochrome c. The side chain of Phe 20 is redirected toward the molecular surface, altering the packing of this region of omega-loop A with the hydrophobic core of the protein. In the RepA2(Val 20) structure, omega-loop A contains a valine at position 20, which restores the original wild-type packing arrangement of the hydrophobic core. Also, as a result of omega-loop A replacement, residue 26 is changed from a histidine to asparagine, which results in displacements of the main-chain atoms near residue 44 to which residue 26 is hydrogen bonded. In vivo studies of the growth rate of the mutant strains on nonfermentable media indicate that the RepA2(Val 20) cytochrome c behaves much like the wild-type yeast iso-1 protein, whereas the stability and function of the RepA2 cytochrome c showed a temperature dependence. The midpoint reduction potential measured by cyclic voltammetry of the RepA2 mutant is 271 mV at 25 degrees C. This is 19 mV less than the wild-type and RepA2(Val 20) proteins (290 mV) and may result from disruption of the hydrophobic packing in the heme pocket and increased mobility of omega-loop A in RepA2 cytochrome c. The temperature dependence of the reduction potential is also greatly enhanced in the RepA2 protein.  相似文献   

8.
To interpret effects of urea and guanidinium (GuH(+)) salts on processes that involve large changes in protein water-accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Gamma(mu3)) as functions of nondenaturing concentrations of these solutes (0-1 molal). From analysis of Gamma(mu3) using the local-bulk domain model, we obtain concentration-independent partition coefficients K(nat)(P) that characterize the accumulation of these solutes near native protein (BSA) surface: K(nat)(P,urea)= 1.10 +/- 0.04, K(nat)(P,SCN(-)) = 2.4 +/- 0.2, K(nat)(P,GuH(+)) = 1.60 +/- 0.08, relative to K(nat)(P,K(+)) identical with 1 and K(nat)(P,Cl(-)) = 1.0 +/- 0.08. The relative magnitudes of K(nat)(P) are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (K(nat)(P)) with those determined by us previously for unfolded protein and alanine-based peptide surface K(unf)(P), we dissect K(P) into contributions from polar peptide backbone and other types of protein surface. For globular protein-urea interactions, we find K(nat)(P,urea) = K(unf)(P,urea). We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of K(P) and the change in protein ASA.  相似文献   

9.
Three-dimensional modeling of the complex between retinoic acid-binding protein (CRABP) and retinoic acid suggests that binding of the ligand is mediated by interaction between the carboxyl group of retinoic acid and two charged amino acids (Arg-111 and Arg-131) whose side chains project into the barrel of the protein. To assess the contribution of these amino acids to protein-ligand interaction, amino acid substitutions were made by oligonucleotide-directed, site-specific mutagenesis. The wild-type and mutant proteins were expressed in E. coli and subsequently purified. Like wild-type CRABP, the mutant proteins are composed mainly of beta-strands as determined by circular dichroism in the presence and absence of ligand, and thus presumably are folded into the same compact barrel structure as the wild-type protein. Mutants in which Arg-111 and Arg-131 are replaced by glutamine bind retinoic acid with significantly lower affinity than the wild-type protein, arguing that these two residues indeed interact with the ligand. The mutant proteins are more resistant to thermal denaturation than wild-type CRABP in the absence of retinoic acid, but they are not as thermostable as the CRABP-retinoic acid complex. These data suggest a model for CRABP-retinoic acid interaction in which the repulsive forces between the positively-charged arginine residues provide conformational flexibility to the native protein for retinoic acid to enter the binding pocket. Elimination of the positively-charged pair of amino acids produces a protein that is more thermostable than wild-type CRABP but less effective at ligand-binding.  相似文献   

10.
An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.  相似文献   

11.
Two of the five domains in the structure of the ornithine decarboxylase (OrnDC) from Lactobacillus 30a share similar structural folds around the pyridoxal-5''-phosphate (PLP)-binding pocket with the aspartate aminotransferases (AspATs). Sequence comparisons focusing on conserved residues of the aligned structures reveal that this structural motif is also present in a number of other PLP-dependent enzymes including the histidine, dopa, tryptophan, glutamate, and glycine decarboxylases as well as tryptophanase and serine-hydroxymethyl transferase. However, this motif is not present in eukaryotic OrnDCs, the diaminopimelate decarboxylases, nor the Escherichia coli or oat arginine decarboxylases. The identification and comparison of residues involved in defining the different classes are discussed.  相似文献   

12.
An expanded, highly dynamic denatured state of staphylococcal nuclease exhibits a native-like topology in the apparent absence of tight packing and fixed hydrogen bonds (Gillespie JR, Shortle D, 1997, J Mol Biol 268:158-169, 170-184). To address the physical basis of the long-range spatial ordering of this molecule, we probe the effects of perturbations of the sequence and solution conditions on the local chain dynamics of a denatured 101-residue fragment that is missing the first three beta strands. Structural interactions between chain segments are inferred from correlated changes in the motional behavior of residues monitored by 15N NMR relaxation measurements. Restoration of the sequence corresponding to the first three beta strands significantly increases the average order of all chain segments that form the five strand beta barrel including loops but has no effect on the carboxy terminal 30 residues. Addition of the denaturing salt sodium perchlorate enhances ordering over the entire sequence of this fragment. Analysis of seven different substitution mutants points to a complex set of interactions between the hydrophobic segment corresponding to beta strand 5 and the remainder of the chain. General patterns in the data suggest there is a hierarchy of native-like interactions that occur transiently in the denatured state and are consistent with the overall topology of the denatured state ensemble being determined by many coupled local interactions rather than a few highly specific long-range interactions.  相似文献   

13.
Protein–protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein–protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein–protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein–protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein‐protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10‐fold cross‐validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein–protein interaction networks and human–pathogen interactions based on the strength of interactions. Proteins 2014; 82:2088–2096. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
本试验对比观测研究了在稻田土壤中经3年陈化后的生物炭(B_3)和新施入生物炭(B_0)对稻麦轮作系统CH_4和N_2O综合温室效应和温室气体强度的影响,旨在明确生物炭对土壤温室气体排放的长期效应.田间试验设置4个处理,分别为对照(CK)、施用氮肥不施用生物炭(N)、施用氮肥和新生物炭(NB_0)以及施用氮肥和陈化生物炭(NB_3)处理.结果表明:NB_0和NB_3处理均显著提高了稻田土壤pH值、有机碳和全氮含量,并且显著影响与温室气体排放相关的微生物潜在活性.与N处理相比,NB_3处理显著增加了作物产量,增幅14.1%,并且显著降低了CH_4和N_2O排放,降幅分别为9.0%和34.0%;而NB_0处理显著增加作物产量,增幅9.3%,显著降低N_2O排放,降幅38.6%,但增加了CH_4排放,增幅4.7%;同时NB_0和NB_3处理均能降低稻麦轮作系统的综合温室效应和温室气体强度,且NB_3处理能更有效地减少温室气体的排放并提高作物产量.在土壤中经3年陈化后的生物炭仍然具有固碳减排能力,因此,施用生物炭对稻麦轮作系统固碳减排和改善作物生产具有长期效应.  相似文献   

15.
Nanoporous sol–gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica‐based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono‐, di‐ and tri‐substituted alkoxysilanes, RnSi(OCH3)4?n (R = methyl‐, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (? Si? O? Si? ). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by 29Si MAS NMR and N2 adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native‐like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl‐modified glass, the protein even reached a maximum molar helicity (?24,000 deg. cm2 mol?1) comparable to the stable folded heme‐bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 895–906, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
A 3-dimensional model of the human eye lens protein gamma S-crystallin has been constructed using comparative modeling approaches encoded in the program COMPOSER on the basis of the 3-dimensional structure of gamma-crystallin and beta-crystallin. The model is biased toward the monomeric gamma B-crystallin, which is more similar in sequence. Bovine gamma S-crystallin was shown to be monomeric by analytical ultracentrifugation without any tendency to form assemblies up to concentrations in the millimolar range. The connecting peptide between domains was therefore built assuming an intramolecular association as in the monomeric gamma-crystallins. Because the linker has 1 extra residue compared with gamma B and beta B2, the conformation of the connecting peptide was constructed by using a fragment from a protein database. gamma S-crystallin differs from gamma B-crystallin mainly in the interface region between domains. The charged residues are generally paired, although in a different way from both beta- and gamma-crystallins, and may contribute to the different roles of these proteins in the lens.  相似文献   

17.
本试验对比观测研究了在稻田土壤中经3年陈化后的生物炭(B3)和新施入生物炭(B0)对稻麦轮作系统CH4和N2O综合温室效应和温室气体强度的影响,旨在明确生物炭对土壤温室气体排放的长期效应.田间试验设置4个处理,分别为对照(CK)、施用氮肥不施用生物炭(N)、施用氮肥和新生物炭(NB0)以及施用氮肥和陈化生物炭(NB3)处理.结果表明: NB0和NB3处理均显著提高了稻田土壤pH值、有机碳和全氮含量,并且显著影响与温室气体排放相关的微生物潜在活性.与N处理相比,NB3处理显著增加了作物产量,增幅14.1%,并且显著降低了CH4和N2O排放,降幅分别为9.0%和34.0%;而NB0处理显著增加作物产量,增幅9.3%,显著降低N2O排放,降幅38.6%,但增加了CH4排放,增幅4.7%;同时NB0和NB3处理均能降低稻麦轮作系统的综合温室效应和温室气体强度,且NB3处理能更有效地减少温室气体的排放并提高作物产量.在土壤中经3年陈化后的生物炭仍然具有固碳减排能力,因此,施用生物炭对稻麦轮作系统固碳减排和改善作物生产具有长期效应.  相似文献   

18.
大洋臀纹粉蚧Planococcus minor Maskell和南洋臀纹粉蚧P.lilacinus Cockerell是我国有重要检疫意义的有害生物。这两种粉蚧从东盟进口水果口岸检疫中频繁截获,且已在广东、海南、云南等地发现大洋臀纹粉蚧入侵,这对我国热带、亚热带的水果和观赏植物等已构成严重威胁。本研究以大洋臀纹粉蚧和南洋臀纹粉蚧在国内外的分布数据为基础,利用Maxent生态位模型和Arc GIS对两种粉蚧在中国的潜在适生区进行预测。预测结果表明,大洋臀纹粉蚧和南洋臀纹粉蚧的适生区主要分布在长江流域以南地区,其适生区面积分别占全国面积的22.14%、18.17%,其中高度适生区域集中分布在广西、广东、云南、福建、四川、台湾、海南等地区,与我国热带水果的主要种植区域具有高度的一致性。大洋臀纹粉蚧已成功入侵,一旦南洋臀纹粉蚧传入便可迅速扩散蔓延,并对我国热带水果生产造成严重危害。因此,各口岸应加强对东盟进口水果的检验检疫,预防其新的进入和扩散。  相似文献   

19.
An investigation was conducted to determine the affect of structural variation of biotin conjugates on their dissociation rates from Av and SAv. This information was sought to help identify optimal biotin derivatives for in vivo applications. Fifteen biotin derivatives were conjugated with a cyanocobalamin (CN-Cbl) derivative for evaluation of their "relative" dissociation rates by size exclusion HPLC analysis. Two biotin-CN-Cbl conjugates, one containing unaltered biotin and the other containing iminobiotin, were prepared as reference compounds for comparison purposes. The first structural variations studied involved modification of the biotinamide bond with a N-methyl moiety (i.e., sarcosine conjugate), lengthening the valeric acid side chain by a methylene unit (i.e., homobiotin), and replacing the biotinamide bond with thiourea bonds in two conjugates. The rate of dissociation of the biotin-CN-Cbl derivative from Av and SAv was significantly increased for biotin derivatives containing those structural features. Nine additional biotin conjugates were obtained by coupling amino acids or functional group protected amino acids to the biotin moiety. In the conjugates, the biotin moiety and biotinamide bond were not altered, but substituents of various sizes were introduced alpha to the biotinamide bond. The results obtained from HPLC analyses indicated that the rate of dissociation from Av or SAv was not affected by small substituents alpha to the biotinamide (e.g., methyl, hydroxymethyl, and carboxylate groups), but was significantly increased when larger functional groups were present. On the basis of the results obtained, it appears that biotin conjugates which retain an unmodified biotin moiety and have a linker molecule conjugated to it that has a small functional group (e.g., hydroxymethylene or carboxylate) alpha to the biotinamide bond are excellent candidates for in vivo applications. These structural features are obtained in the biotin amino acid conjugates: biotin-serine, biotin-aspartate, biotin-lysine, and biotin-cysteine. Importantly, these biotin derivatives can be readily conjugated with other molecules for specific in vivo applications. In our studies, these derivatives will be used in the design of new biotin conjugates to carry radionuclides for cancer therapy using the pretargeting approach.  相似文献   

20.
东江流域集水区城市化差异及其对景观格局的影响   总被引:5,自引:0,他引:5  
任文韬  彭少麟  周婷  李岩 《应用生态学报》2008,19(12):2680-2686
基于东江流域1991、1998、2006年TM影像,通过分别代表东江流域上游、中游和下游的3个集水区各地物类型面积和景观指数分析了东江流域城市化程度与进程的差异及其对集水区景观格局的影响.结果表明:东江流域从上游到下游的城市化程度和进程依次增加;城市化对水体和植被的影响较大,城镇用地面积与水体面积呈显著正相关,城镇用地面积总体上与森林面积呈显著负相关,但当城市化发展到相对较高水平时可能促进森林恢复;1991—2006年间,上游的a集水区、中游的b集水区的景观格局均呈复杂化趋势;1991—1998年间,下游的c集水区景观格局呈复杂化,而1998—2006年间,则趋于简单,表明随着城市化的进行,景观格局呈“简单-复杂-简单”的变化趋势.研究东江流域景观格局从上游到下游的规律性变化对于整个流域的协调管理与可持续发展具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号