首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial evidence argues that human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T cells play an important role in the control of HIV-1 replication in infected individuals. Moreover, it is increasingly clear that an HIV vaccine should elicit potent cytotoxic lymphocyte and antibody responses that will likely require an efficient CD4(+) T-cell response. Therefore, understanding and characterizing HIV-specific CD4(+) T-cell responses is an important aim. Here we describe the generation of HIV-1 Gag- and Gag peptide-specific CD4(+) T-cell clones from an HIV-1-seronegative donor by in vitro immunization with HIV-1 Gag peptides. The Gag peptides were able to induce a strong CD4(+) T-cell immune response in peripheral blood mononuclear cells from the HIV-1-seronegative donor. Six Gag peptide-specific CD4(+) T-cell clones were isolated and their epitopes were mapped. The region of p24 between amino acids 201 and 300 of Gag was defined as the immunodominant region of Gag. A new T helper epitope in the p6 protein of Gag was identified. Two clones were shown to recognize Gag peptides and processed Gag protein, while the other four clones reacted only to Gag peptides under the experimental conditions used. Functional analysis of the clones indicated that both Th1 and Th2 types of CD4(+) T cells were obtained. One clone showed direct antigen-specific cytotoxic activity. These clones represent a valuable tool for understanding the cellular immune response to HIV-1, and the study provides new insights into the HIV-1-specific CD4(+) T-cell response and the induction of an anti-Gag and -Gag peptide cellular primary immune response in vitro.  相似文献   

2.
The association of HLA-B27 with ankylosing spondylitis and reactive arthritis is the strongest one known between an MHC class I Ag and a disease. We have searched the proteome of the bacterium Chlamydia trachomatis for HLA-B27 binding peptides that are stimulatory for CD8(+) cells both in a model of HLA-B27 transgenic mice and in patients. This was done by combining two biomathematical computer programs, the first of which predicts HLA-B27 peptide binding epitopes, and the second the probability of HLA-B27 peptide generation by the proteasome system. After preselection, immunodominant peptides were identified by Ag-specific flow cytometry. Using this approach we have identified for the first time nine peptides derived from different C. trachomatis proteins that are stimulatory for CD8(+) T cells. Eight of these nine murine-derived peptides were recognized by cytotoxic T cells. The same strategy was used to identify B27-restricted chlamydial peptides in three patients with reactive arthritis. Eleven peptides were found to be stimulatory for patient-derived CD8(+) T cells, of which eight overlapped those found in mice. Additionally, we applied the tetramer technology, showing that a B27/chlamydial peptide containing one of the chlamydial peptides stained CD8(+) T cells in patients with Chlamydia-induced arthritis. This comprehensive approach offers the possibility of clarifying the pathogenesis of B27-associated diseases.  相似文献   

3.
We have attempted to develop an anti-human immunodeficiency virus (HIV) lipopeptide vaccine with several HIV-specific long peptides modified by C-terminal addition of a single palmitoyl chain. A mixture of six lipopeptides derived from regulatory or structural HIV-1 proteins (Nef, Gag, and Env) was prepared. A phase I study was conducted to evaluate immunogenicity and tolerance in lipopeptide vaccination of HIV-1-seronegative volunteers given three injections of either 100, 250, or 500 microg of each lipopeptide, with or without immunoadjuvant (QS21). This report analyzes in detail B- and T-cell responses induced by vaccination. The lipopeptide vaccine elicited strong and multiepitopic B- and T-cell responses. Vaccinated subjects produced specific immunoglobulin G antibodies that recognized the Nef and Gag proteins. After the third injection, helper CD4(+)-T-cell responses as well as specific cytotoxic CD8(+) T cells were also obtained. These CD8(+) T cells were able to recognize naturally processed viral proteins. Finally, specific gamma interferon-secreting CD8(+) T cells were also detected ex vivo.  相似文献   

4.
NY-ESO-1, a germ cell Ag often detected in tumor tissues, frequently elicits Ab and CD8(+) T cell responses in cancer patients. Overlapping long peptides spanning the NY-ESO-1 sequence have been used to map HLA class I-restricted epitopes recognized by NY-ESO-1-specific CD8(+) T lymphocytes. To address the antigenicity of long peptides, we analyzed two synthetic 30-mer peptides from NY-ESO-1, polypeptides 80-109 and 145-174, for their capacity to be processed by APCs and to stimulate CD8(+) T cells. By incubating APCs with polypeptides at different temperatures or in the presence of protease inhibitors, we found that NY-ESO-1 polypeptides were rapidly internalized by B cells, T2 cells, or PBLs and submitted to cellular proteolytic action to yield nonamer epitopes presented by HLA class I. Polypeptides were also immunogenic in vitro and stimulated the expansion of CD8(+) T cells against naturally processed NY-ESO-1 epitopes in the context of three different HLA class I alleles. Polypeptides can thus serve as exogenous Ags that are cross-presented on HLA class I without requiring the action of professional APCs. These findings support innovative vaccination strategies using NY-ESO-1 polypeptides that would circumvent current limitations of HLA class I peptide vaccination, i.e., HLA eligibility criteria and knowledge of epitope, while allowing for facilitated immunogenicity in the presence of helper epitopes.  相似文献   

5.
The cellular immune response contributes to viral clearance as well as to liver injury in acute and chronic hepatitis C virus (HCV) infection. An immunodominant determinant frequently recognized by liver-infiltrating and circulating CD8(+) T cells of HCV-infected patients is the HCV(NS3-1073) peptide CVNGVCWTV. Using a sensitive in vitro technique with HCV peptides and multiple cytokines, we were able to expand cytotoxic T cells specific for this determinant not only from the blood of 11 of 20 HCV-infected patients (55%) but also from the blood of 9 of 15 HCV-negative blood donors (60%), while a second HCV NS3 determinant was recognized only by HCV-infected patients and not by seronegative controls. The T-cell response of these healthy blood donors was mediated by memory T cells, which cross-reacted with a novel T-cell determinant of the A/PR/8/34 influenza A virus (IV) that is endogenously processed from the neuraminidase (NA) protein. Both the HCV NS3 and the IV NA peptide displayed a high degree of sequence homology, bound to the HLA-A2 molecule with high affinity, and were recognized by cytotoxic T lymphocytes with similar affinity (10(-8) M). Using the HLA-A2-transgenic mouse model, we then demonstrated directly that HCV-specific T cells could be induced in vivo by IV infection. Splenocytes harvested from IV-infected mice at the peak of the primary response (day 7 effector cells) or following complete recovery (day 21 memory cells) recognized the HCV NS3 peptide, lysed peptide-pulsed target cells, and produced gamma interferon. These results exemplify that host responses to an infectious agent are influenced by cross-reactive memory cells induced by past exposure to heterologous viruses, which could have important consequences for vaccine development.  相似文献   

6.
The immune system surveys the organism for the presence of foreign or abnormal structures. An important role in the immune response is assumed by T lymphocytes that recognize foreign antigen while tolerating self-proteins. T lymphocytes can recognize only peptide fragments that are presented to them by molecules of the major histocompatibility complex (MHC). Antigen processing for presentation to T cells involves distinct cellular compartments where peptides and MHC molecules interact. Whereas class I MHC molecules (recognized by CD8+ cytotoxic T cells) acquire peptides in an early biosynthetic compartment, class II molecules (recognized by CD4+ helper T cells) acquire peptides most efficiently in an endocytic compartment. It has emerged recently that the class II processing compartment can be fed not only from the outside with exogenous antigen but also from endogenous sources, including membrane-associated and cytosolic proteins. The potential sources of proteins that can trigger a helper T cell response during viral infections and that can induce self-tolerance are thus much wider than previously anticipated.  相似文献   

7.
Strong CD4(+) and CD8(+) T cell responses are considered important immune components for controlling HIV infection, and their priming may be central to an effective HIV vaccine. We describe in this study an approach by which multiple CD4(+) and CD8(+) T cell epitopes are processed and presented from an exogenously added HIV-1 Gag-p24 peptide of 32 aa complexed to heat shock protein (HSP) gp96. CD8(+) T cell recognition of the HSP/peptide complex, but not the peptide alone, was inhibited by brefeldin A, suggesting an endoplasmic reticulum-dependent pathway. This is the first report to describe efficient processing and simultaneous presentation of overlapping class I- and class II-restricted epitopes from the same extracellularly added precursor peptide complexed to HSP. Given previous reports of the strong immunogenicity of HSP/peptide complexes, the present data suggest that HSP-complexed peptides containing multiple MHC class I- and class II-restricted epitopes represent potential vaccine candidates for HIV and other viral infections suitable to induce effective CTL memory by simultaneously providing CD4 T cell help.  相似文献   

8.
Perforin-mediated lysis of target cells is the major antiviral effector mechanism of CD8(+) T lymphocytes. We have analyzed the role of perforin in a mouse model for CD8(+) T-cell-mediated central nervous system (CNS) immunopathology induced by Borna disease virus. When a defective perforin gene was introduced into the genetic background of the Borna disease-susceptible mouse strain MRL, the resulting perforin-deficient mice developed strong neurological disease in response to infection indistinguishable from that of their perforin-expressing littermates. The onset of disease was slightly delayed. Brains of diseased perforin-deficient mice showed similar amounts and a similar distribution of CD8(+) T cells as wild-type animals. Perforin deficiency had no impact on the kinetics of viral spread through the CNS. Unlike brain lymphocytes from diseased wild-type mice, lymphocytes from perforin-deficient MRL mice showed no in vitro cytolytic activity towards target cells expressing the nucleoprotein of Borna disease virus. Taken together, these results demonstrate that CD8(+) T cells mediate Borna disease independent of perforin. They further suggest that the pathogenic potential of CNS-infiltrating CD8(+) T cells does not primarily reside in their lytic activity but rather in other functions.  相似文献   

9.
Remakus S  Rubio D  Ma X  Sette A  Sigal LJ 《Journal of virology》2012,86(18):9748-9759
The antigens recognized by individual CD8(+) T cells are small peptides bound to major histocompatibility complex (MHC) class I molecules. The CD8(+) T cell response to a virus is restricted to several peptides, and the magnitudes of the effector as well as memory phases of the response to the individual peptides are generally hierarchical. The peptide eliciting a stronger response is called immunodominant (ID), and those with smaller-magnitude responses are termed subdominant (SD). The relative importance of ID and SD determinants in protective immunity remains to be fully elucidated. We previously showed that multispecific memory CD8(+) T cells can protect susceptible mice from mousepox, an acute lethal viral disease. It remained unknown, however, whether CD8(+) T cells specific for single ID or SD peptides could be protective. Here, we demonstrate that immunization with dendritic cells pulsed with ID and some but not all SD peptides induces memory CD8(+) T cells that are fully capable of protecting susceptible mice from mousepox. Additionally, while natural killer (NK) cells are essential for the natural resistance of nonimmune C57BL/6 (B6) to mousepox, we show that memory CD8(+) T cells of single specificity also protect B6 mice depleted of NK cells. This suggests it is feasible to produce effective antiviral CD8(+) T cell vaccines using single CD8(+) T cell determinants and that NK cells are no longer essential when memory CD8(+) T cells are present.  相似文献   

10.
Spontaneous autoimmune diabetes development in NOD mice requires both CD8(+) and CD4(+) T cells. Three pathogenic CD8(+) T cell populations (represented by the G9C8, 8.3, and AI4 clones) have been described. Although the Ags for G9C8 and 8.3 are known to be insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein, respectively, only mimotope peptides had previously been identified for AI4. In this study, we used peptide/MHC tetramers to detect and quantify these three pathogenic populations among beta cell-reactive T cells cultured from islets of individual NOD mice. Even within age-matched groups, each individual mouse exhibited a unique distribution of beta cell-reactive CD8(+) T cells, both in terms of the number of tetramer-staining populations and the relative proportion of each population in the islet infiltrate. Thus, the inflammatory process in each individual follows its own distinctive course. Screening of a combinatorial peptide library in positional scanning format led to the identification of a peptide derived from dystrophia myotonica kinase (DMK) that is recognized by AI4-like T cells. Importantly, the antigenic peptide is naturally processed and presented by DMK-transfected cells. DMK is a widely expressed protein that is nonetheless the target of a beta cell-specific autoimmune response.  相似文献   

11.
The adaptive immune system generates CD8 cytotoxic T lymphocytes (CTLs) as a major component of the protective response against viruses. Knowledge regarding the nature of the peptide sequences presented by HLA class I molecules and recognized by CTLs is thus important for understanding host-pathogen interactions. In this study, we focused on identification of a CTL epitope generated from coxsackievirus B4 (CVB4), a member of the enterovirus group responsible for several inflammatory diseases in humans and often implicated in the triggering and/or acceleration of the autoimmune disease type 1 diabetes. We identified a 9-mer peptide epitope that can be generated from the P2C nonstructural protein of CVB4 (P2C(1137-1145)) and from whole virus by antigen-presenting cells and presented by HLA-A2.1. This epitope is recognized by effector memory (gamma interferon [IFN-gamma]-producing) CD8 T cells in the peripheral blood at a frequency of responders that suggests that it is a major focus of the anti-CVB4 response. Short-term CD8 T-cell lines generated against P2C(1137-1145) are cytotoxic against peptide-loaded target cells. Of particular interest, the epitope lies within a region of viral homology with the diabetes-related autoantigen, glutamic acid decarboxylase-65 (GAD(65)). However, P2C(1137-1145)-specific cytotoxic T lymphocyte (CTL) lines were not activated to produce IFN-gamma by the GAD(65) peptide homologue and did not show cytotoxic activity in the presence of appropriately labeled targets. These results describe the first CD8 T-cell epitope of CVB4 that will prove useful in the study of CVB4-associated disease.  相似文献   

12.
Cytolytic CD8(+) T cells (CTL) are key to the immune response that controls virus infections and mediates disease protection. The ability of CTL to induce apoptosis of infected cells and/or limit viral replication is determined by recognition of processed viral peptide epitopes on the surface of the target cell. An understudied source of MHC class I-presented peptides is the aptly named "cryptic epitopes," defined by their nontraditional methods of generation, including derivation from alternative reading frames (ARFs). Although ARF-encoded epitopes have now been documented in a few systems, their potential functional relevance in vivo has been debated. In this study, we demonstrate the physiological significance of an ARF-derived CTL epitope in a retrovirus-induced disease model. We show that disease-susceptible CD8-deficient mice reconstituted with CTL specific for the retroviral ARF-derived SYNTGRFPPL epitope controlled an infection by the LP-BM5 retrovirus isolate, evidently at the level of viral clearance, resulting in protection of these mice from disease. These data indicate that ARF-derived epitopes are indeed relevant inducers of the immune system and demonstrate the importance of atypically generated peptides as functional Ag with a physiologic role in disease protection.  相似文献   

13.
Class II MHC proteins bind peptides and present them to CD4 (+) T cells as part of the immune system's surveillance of bodily tissues for foreign and pathogenic material. Antigen processing and presentation pathways have been characterized in detail in normal cells, but there is little known about the actual viral peptides that are presented to CD4 (+) T cells that signal infection. In this study, two-dimensional LC-MS/MS was used to identify vaccinia virus-derived peptides among the hundreds to thousands of peptide antigens bound to the human class II MHC protein HLA-DR1 on the surface of vaccinia virus-infected cells. The peptides, derived from the I6L, D6R, and A10L viral proteins, were 15 residues in length, bound efficiently to HLA-DR1 as synthetic peptides, and were recognized by vaccinia-specific CD4 (+) T cells obtained from an immunized donor.  相似文献   

14.
Viral peptides are presented by HLA class I on infected cells to activate CD8(+) T cells. Several immunogenic peptides have been identified indirectly by epitope prediction and screening of T cell responses to poxviral vectors, including modified vaccinia virus Ankara (MVA) currently being tested as recombinant or smallpox vaccines. However, for the development of optimal vaccination and immunomonitoring strategies, it is essential to characterize the actual viral HLA ligand repertoire of infected cells. We used an innovative approach to identify naturally processed MVA HLA ligands by differential HPLC-coupled mass spectrometry. We describe 12 viral peptides presented by HLA-A*0201 and 3 by HLA-B*0702. All HLA-A*0201 ligands participated in the memory response of MVA-immune donors, and several were immunogenic in Dryvax vaccinees. Eight epitopes were novel. Viral HLA ligand presentation and viral protein abundance did not correlate. All ligands were expressed early during the viral life cycle, and a pool of three of these mediated stronger protection against a lethal challenge in mice as compared with late epitopes. This highlights the reliability of the comparative mass spectrometry-based technique to identify relevant viral CD8(+) T cell epitopes for optimizing the monitoring of protective immune responses and the development of effective peptide-based vaccines.  相似文献   

15.
The lungs are a major organ site of cytomegalovirus (CMV) infection, pathogenesis, and latency. Interstitial CMV pneumonia represents a critical manifestation of CMV disease, in particular in recipients of bone marrow transplantation (BMT). We have employed a murine model for studying the immune response to CMV in the lungs in the specific scenario of immune reconstitution after syngeneic BMT. Control of pulmonary infection was associated with a vigorous infiltration of the lungs, which was characterized by a preferential recruitment and massive expansion of the CD8 subset of α/β T cells. The infiltrate provided a microenvironment in which the CD8 T cells differentiated into mature effector cells, that is, into functionally active cytolytic T lymphocytes (CTL). This gave us the opportunity for an ex vivo testing of the antigen specificities of CTL present at a relevant organ site of viral pathogenesis. The contribution of the previously identified immediate-early 1 (IE1) nonapeptide of murine CMV was evaluated by comparison with the CD3-redirected cytolytic activity used as a measure of the overall CTL response in the lungs. The IE1 peptide was detected by pulmonary CTL, but it accounted for a minor part of the response. Interestingly, no additional viral or virus-induced antigenic peptides were detectable among naturally processed peptides derived from infected lungs, even though infected fibroblasts were recognized in a major histocompatibility complex-restricted manner. We conclude that the antiviral pulmonary immune response is a collaborative function that involves many antigenic peptides, among which the IE1 peptide is immunodominant in a relative sense.  相似文献   

16.
Experimental Borna disease virus (BDV) infection of rats and natural infection of horses and sheep leads to severe central nervous system disease based on immunopathological pathways. The virus replicates slowly, and the cellular immune response results in immunopathology. CD8(+) T cells exert effector cell functions, and their activity results in the destruction of virus-infected cells. Previously, Oldach and colleagues (D. Oldach, M. C. Zink, J. M. Pyper, S. Herzog, R. Rott, O. Narayan, and J. E. Clements, Virology 206:426-434, 1995) have reported protection against Borna disease after inoculation of high-dose cell-adapted BDV. Here we show that the outcome of the infection, i.e., immunopathology versus protection, is simply dependent on the amount of virus used for infection. High-dose BDV (10(6) FFU) triggers an early virus-specific reaction of the immune system, as demonstrated by strong cellular and humoral responses. In particular, the early presence and function of nucleoprotein-specific CD8(+) T cells could be demonstrated in the brain. We present evidence that in a noncytolytic and usually persistent virus infection, high-dose input virus mediates early control of the pathogen due to an efficient induction of an antiviral immune mechanism. From these data, we conclude that immune reactivity, in particular the cytotoxic T-cell response, determines whether the virus is controlled with prevention of the ensuing immunopathological disease or whether a persistent infection is established.  相似文献   

17.
Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8(+)-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8(+)-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E7(11-19/20)) epitope YMLDLQPET(T) in vitro. CD8(+) T cells reacting to the HLA-A2-presented peptide from HPV16 E7(11-19(20)) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8(+)-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E7(11-19(20)) and coronavirus NS2(52-60) represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed > or =0.1% HPV16 E7-reactive T cells in CD8(+) peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E7(11-19(20)) CD8(+)-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.  相似文献   

18.
BACKGROUND: Activated CD8(+) T cells are retained by the healthy liver where the majority undergo apoptosis. The intrahepatic apoptosis of activated CD8(+) T cells is enhanced by the presence of SIINFEKL peptide. It is of great interest to identify strategies for maintaining intrahepatic T cell number and function in the presence of SIINFEKL peptides. AIM: Our aim was to test if low affinity peptides can block SIINFEKL peptide induced T cell deletion. METHODS: We used an in vivo model of intrahepatic CD8(+) T cell deletion with peptides of different affinities. RESULTS AND DISCUSSION: We show that the intrahepatic deletion of CD8(+) T cells by SIINFEKL peptide results in loss of in vivo cytotoxic T lymphocyte function. In contrast we show that a low affinity peptide (G4) does not result in intrahepatic deletion of CD8(+) T cells. High concentrations G4 peptide can however block intrahepatic deletion of activated CD8(+) T cells, and prevent loss of in vivo cytotoxicity due to SIINFEKL peptide. This is the first demonstration of blocking of SIINFEKL peptide induced CD8(+) T cell deletion in the liver, with enhancement of in vivo cytotoxicity.  相似文献   

19.
Pancreatic carcinoma is a very aggressive disease with dismal prognosis. Although evidences for tumor-specific T cell immunity exist, factors related to tumor microenvironment and the presence of immunosuppressive cytokines in patients' sera have been related to its aggressive behavior. Carcinoembryonic Ag (CEA) is overexpressed in 80-90% of pancreatic carcinomas and contains epitopes recognized by CD4(+) T cells. The aim of this study was to evaluate the extent of cancer-immune surveillance and immune suppression in pancreatic carcinoma patients by comparing the anti-CEA and antiviral CD4(+) T cell immunity. CD4(+) T cells from 23 normal donors and 44 patients undergoing surgical resection were tested for recognition of peptides corresponding to CEA and viral naturally processed promiscuous epitopes by proliferation and cytokine release assays. Anti-CEA CD4(+) T cell immunity was present in a significantly higher number of normal donors than pancreatic cancer patients. Importantly, whereas CD4(+) T cells from normal donors produced mainly GM-CSF and IFN-gamma, CD4(+) T cells from the patients produced mainly IL-5, demonstrating a skew toward a Th2 type. On the contrary, the extent of antiviral CD4(+) T cell immunity was comparable between the two groups and showed a Th1 type. The immunohistochemical analysis of tumor-infiltrating lymphocytes showed a significantly higher number of GATA-3(+) compared with T-bet(+) lymphoid cells, supporting a Th2 skew also at the tumor site. Collectively, these results demonstrate that Th2-immune deviation in pancreatic cancer is not generalized but tumor related and suggests that the skew might be possibly due to factor(s) present at the tumor site.  相似文献   

20.
Vaccination with class I tumor peptides has been performed to induce tumor-reactive CD8(+) T cells in vivo. However, the kinds of immune responses that vaccination might elicit in patients are not fully understood. In this study we tried to elucidate the mechanisms by which vaccination of class I binding tumor peptides into an HLA-A2(+) lung cancer patient elicited dramatic amounts of IgG1 and IgG2 specific to a nonamer peptide, ubiquitin-conjugated enzyme variant Kua (UBE2V)(43-51). The UBE2V(43-51) peptide contains cysteine at the sixth position. HLA-DR-restricted and UBE2V(43-51) peptide-recognizing CD4(+) T cells were induced from postvaccination, but not from prevaccination, PBMCs of the cancer patient. In addition, a CD4(+) T cell line (UB-2) and its clone (UB-2.3), both of which recognize the UBE2V(43-51) peptide in the context of HLA-DRB1*0403 molecules, were successfully established from postvaccination PBMCs. The peptide vaccination increased the frequency of peptide-specific T cells, especially CD4(+) T cells. In contrast, mass spectrometric analysis revealed that the vaccinated UBE2V(43-51) peptide contained both monomeric and dimeric forms. Both forms, fractionated by reverse phase HPLC, were recognized by UB-2 and UB-2.3 cells. Recognition by these CD4(+) T cells was observed despite the addition of a reduction reagent or the fixation of APC. Overall, these results indicate that vaccination with class I tumor peptides can induce HLA-DR-restricted CD4(+) T cells in vivo and elicit humoral immune responses, and that a cysteine-containing peptide can be recognized by CD4(+) T cells not only as a monomer, but also as a dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号