首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive studies on the safety evaluation of chemicals have indicated that a considerable number of non-genotoxic chemicals are carcinogenic. Tumour promoters are likely to be among these non-genotoxic carcinogens, and their detection is considered to be an important approach to the prevention of cancer. In this review, the results are summarised for in vitro transformation assays involving established cell lines, and for an assay for inhibition of gap junctional intercellular communication for the detection of tumour promoters, which involves V79 cells. Although the number of chemicals examined is still too small to permit a full evaluation of the correlation between in vitro cell transformation and in vivo carcinogenicity, it is clear that the sensitivity of the focus formation assay is very high. In the case of the metabolic cooperation assay, the sensitivity appears to be rather poor, but the assay can be considered to be useful because of its simple procedure and its considerable database. These in vitro assays for tumour promoters are recommended as useful tools for the detection of non-genotoxic carcinogens.  相似文献   

2.
Retinaldehyde and retinoic acid are derivatives of vitamin A, and retinaldehyde is the precursor for the synthesis of retinoic acid, a well-known inhibitor of gap junctional intercellular communication. In this investigation, we asked the question if retinaldehyde has similar effects on gap junctions. Gap junctional intercellular communication was measured by scrape-loading and preloading dye-transfer methods, and studies were carried out mainly on cultured liver epithelial cells. Retinaldehyde was found to be a more potent inhibitor (dye transfer reduced by 50% at 2.8 μM) than retinoic acid (dye transfer reduced by 50% at 30 μM) and glycyrrhetinic acid (dye transfer reduced by 50% at 65 μM). Both the 11-cis and all-trans forms of retinaldehyde were equally effective. Retinaldehyde inhibited dye transfer of both anionic Lucifer yellow and cationic Neurobiotin. Inhibition by retinaldehyde developed in less than two minutes at 50 μM, but unlike the reported case with retinoic acid, recovery was slower, though full. In addition to liver epithelial cells, retinaldehyde inhibited gap junctional communication in lens epithelial cells, retinal pigment epithelial cells and retinal ganglion cells.  相似文献   

3.
Gap-junctional intercellular communication is a biological process implicated in the regulation of cell proliferation and differentiation. Metabolic cooperation between 6-thioguanine-sensitive and resistant Chinese hamster cells, in vitro, has been used as a means to detect chemicals which can inhibit this form of intercellular communication. To further characterize this in vitro system as a potential screening assay for potential teratogens, tumor promoters and reproductive toxicants, a series of common solvents as well as other chemicals representing eight different functional groups, i.e., alcohols with straight or side chains, glycols, ketones, esters, ethers, phenols, aldehydes, amines and amino compounds and oxygen-heterocyclic compounds, were tested for their ability to inhibit colony-formation and to inhibit metabolic cooperation. A wide range of effects were observed which suggested a structure/activity relationship between a chemical's ability to inhibit gap junction-mediated intercellular communication and the cytotoxicity of a chemical. Possible mechanisms affecting the modulation of gap junctional communication by these chemicals are discussed.Abbreviations: Hypoxanthine guanine, phosphoribosyltranferase, HG-PRT; 6-thioguanine, 6-TG.On leave from: Beijing Municipal Research Institute of Environmental Protection, Beijing, People's Republic of China  相似文献   

4.
Gap junctional intercellular communication (GJIC) is recognized as playing an important role in normal cell proliferation and development. Chemically induced alteration of GJIC has been proposed to be associated with abnormal cellular growth and/or tumor promotion. Several in vitro assays are currently used to determine the effects of chemicals on GJIC between cultured mammalian cells. One of these assays, the scrape-loading dye transfer (SLIDT) technique, is based on monitoring the transfer of the fluorescent dye Lucifer yellow from one cell into adjacent cells via functional gap junctions. The objective of our study was to evaluate and compare various approaches for quantifying results obtained with the SL/DT technique. Confluent cultures of either WB rat liver epithelial cells or LC-540 rat leydig cells were exposed to the animal tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), solvent (0.1% ethanol), or culture medium for one hour at 37° C prior to analysis of GJIC. Inhibition of dye transfer was clearly evident following TPA exposure. Quantification of this dye transfer was assessed via four approaches: manually counting the number of labeled cells; measuring the distance of dye travel from the scrape line; quantifying the amount of cellular dye uptake; and determining the distribution of dye away from the scrape line. Our results suggest that while the SL/DT technique can be effectively used as a tool to determine the qualitative presence or absence of GJIC, its use in quantifying changes in GJIC following chemical exposure is limited. Since concentration-dependent responses are critical in chemical testing, application of the SLIDT method should be restricted to a screening assay for qualitatively assessing the presence or absence of GJIC. Another assay (e.g., electrical coupling, microinjection, metabolic cooperation, radioactive metabolite transfer, or fluorescence redistribution after photobleaching) should be considered to quantify changes in GJIC and construct chemical concentration-response curves.Abbreviations FBS, fetal bovine serum - GJIC, gap junctional intercellular communication - HBSS, Hank's balanced saline solution - SL/DT, scrape-loading/dye transfer - TPA, 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

5.
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.  相似文献   

6.
Intercellular communication via gap junctions may be an important mechanism of cellular growth control. Tumor promoters can inhibit intercellular communication between cultured cells, while genotoxic carcinogens apparently lack this capability. The inhibition of intercellular communication by tumor promoters may be an essential mechanism by which tumor promotion occurs in vivo. In this study, the liver tumor promoters phenobarbital, lindane (1,2,3,4,5,6-hexachlorocyclohexane, -isomer), DDT (1,1-Bis[4-chlorophenyl],-2,2,2-trichloroethane), Aroclor 1254 (a polychlorinated biphenyl mixture) and dieldrin inhibited intercellular communication between male B6C3F1 mouse hepatocytes in primary culture. Intercellular communication was detected as the passage of [5-3H]uridine nucleotides from pre-labelled donor hepatocytes to non-labelled recipient heptocytes. Mouse hepatocyte intercellular communication was also inhibited by the skin tumor promoter TPA (12-0-tetradecanoyl phorbol-13-acetate), but not by the bladder tumor promoter saccharin. The genotoxic hepatocarcinogens dimethylnitrosamine, diethylnitrosamine, benzo[a]pyrene and 2-acetylaminofluorene, and the hepatocytotoxins bromobenzene, acetaminophen, carbon tetrachloride, chloroform and methotrexate had no effect on mouse hepatocyte intercellular communication at non-cytotoxic levels. These results suggest that the ability to inhibit mouse hepatocyte intercellular communication is an effect specific to tumor promoters.Abbreviations DDT 1,1-Bis[4-chlorophenyl]-2,2,2-trichloroethane - FBS fetal bovine serum - LDH lactate dehydrogenase - TCA trichloroacetic acid - TPA 12-0-tetradecanoyl-phorbol-13-acetate  相似文献   

7.
Sharov VS  Briviba K  Sies H 《IUBMB life》1999,48(4):379-384
Loss of intercellular communication via gap junctions has been correlated with progression of cells to a malignant phenotype. Here, we show that peroxynitrite, a mediator of toxicity in inflammatory processes, diminishes gap junctional intercellular communication (GJIC) in WB-F344 rat liver epithelial cells, assayed by the scrapeloading dye-transfer technique as well as by microinjection of a fluorescent dye into single cells. Exposure of cultured cells to a steady-state concentration of peroxynitrite of 1.6 microM for 4 min or to 3-morpholinosydnonimine (SIN-1) at 0.5 mM strongly diminished GJIC. These concentrations of peroxynitrite or SIN-1 were not cytotoxic. When cells were grown in a medium supplemented with sodium selenite (0.1-1 microM) for 72 h, substantial protection was afforded against the decrease in GJIC by peroxynitrite. Thus, peroxynitrite can disrupt GJIC, and selenium-containing proteins protect.  相似文献   

8.
The effects of TPA and/or DDT and oleic acid and/or DDT on gap junction-mediated intercellular communication (i.e. metabolic cooperation) between Chinese hamster V79 cells was examined. Addition of TPA, DDT or oleic acid alone to cocultures of 6t-hioguanine-resistant (6-TG R ) and 6-thioguanine-sensitive (6-TG S ) V79 cells significantly increased the recovery of 6-TG R cells indicating inhibition of metabolic cooperation. In the presence of TPA and DDT or oleic acid and DDT the observed recovery of 6-TG R cells was significantly greater than the expected (calculated) additive 6-TG R cell recovery. No synergistic increases in 6-TG R cell recovery were observed when co-cultures of V79 cells were exposed to dieldrin and DDT. These results indicate that TPA and DDT or oleic acid and DDT can act synergistically to inhibit metabolic cooperation. These data suggest a role for protein kinase C in the regulation of gap junction-mediated intercellular communication.Abbreviations DDT dichlorodiphenyltrichlorethane - MC metabolic cooperation defective - 6-TG 6thioguanine - TPA 12-0-tetradecanoylphorbol-13-acetate  相似文献   

9.
Since chemical modulation of gap junctional intercellular communication has been implicated in several toxicological endpoints, a study to examine the ability of several biological toxins to inhibit this process was undertaken. Eight biological toxins were tested for their ability to inhibit metabolic cooperation, a measure of gap-junctional intercellular communication, in the Chinese V79 cell system. Aplysiatoxin, anhydrodebromoaplysiatoxin and debromoaplysiatoxin showed the strongest ability to inhibit metabolic cooperation while T2-toxin and vomitoxin inhibited metabolic cooperation to a lesser degree. Afatoxin B1, afatoxin B2 and palytoxin were inactive in the Chinese V79 system. Palytoxin, which was extremely cytotoxic, might act as a tumor promoter if it induces compensatory hyperplasia in vivo.Abbreviations 6-TG 6-thioguanine - TPA 12-0-tetradecanoylphorbol-13-acetate  相似文献   

10.
The effects of fenvalerate, esfenvalerate, permethrin, cypermethrin, deltamethrin, p-chlorophenylisovaleric acid (CPIA, major metabolite of fenvalerate) and DDT, a liver tumor promoter, on gap junctional intercellular communication (GJIC) were examined in Balb/c3T3 cells by dye-transfer assay. Separate groups of Balb/c3T3 cells were exposed to the chemicals for 1 day. On the following day, GJIC was measured by counting the number of dye-transferring cells per injection of Lucifer Yellow under a fluorescent microscope. Fenvalerate, esfenvalerate, permethrin, cypermethrin, deltamethrin and DDT inhibited GJIC at noncytotoxic concentrations, while CPIA did not inhibit GJIC even, at a cytotoxic concentration. It is concluded that the examined pyrethroid insecticides, but not a metabolite, have inhibitory effects on GJIC in Balb/c3T3 cells.Abbreviations DDT 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane - DMSO dimethyl sulfoxide  相似文献   

11.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.  相似文献   

12.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.  相似文献   

13.
Summary A normal rat liver epithelial cell line, with phenotype characteristics of “oval” cells (WB-F344), was examined for its ability to perform gap-junctional intercellular communication as measured by metabolic cooperation. To test for gap-junctional intercellular communication, 6-thioguanine-sensitive cells were cocultivated with 6-thioguanine-resistant cells. It was found that the recovery of 6-thioguanine-resistant cells depended on the densities of the 6-thioguanine-sensitive cells. Higher densities of 6-thioguanine-sensitive cells reduced the recovery of 6-thioguanine-resistant cells. These observations demonstrate that rat liver epithelial cells could metabolically cooperate, implying they could perform gap-junctional intercellular communication. Two tumor-promoting organochlorine pesticides, aldrin and dieldrin, were potent inhibitors of metabolic cooperation for these cells, but 12-0-tetradecanoyl-phorbol-13-acetate and teleocidin, known mouse skin tumor promoters, were not significantly effective in inhibiting metabolic cooperation. The results suggest that these cells might provide the basis for an in vitro assay specifically to study liver tumor promoters. Research was sponsored by a grant from the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under grant AFOSR-86-0084. The U. S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation thereon.  相似文献   

14.
Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multimechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.  相似文献   

15.
Gap-junctional intercellular communication between grafted neural stem cells (NSCs) and host cells seem to be essential for many of the beneficial effects associated with NSC engraftment. Utilizing murine NSCs (mNSCs) grafted into an organotypic ex vivo model system for striatal tissue we examined the prerequisites for formation of gap-junctional couplings between graft and host cells at different time points following implantation. We utilized flow cytometry (to quantify the proportion of connexin (Cx) 26 and 43 expressing cells), immunohistochemistry (for localization of the gap-junctional proteins in graft and host cells), dye-transfer studies with and without pharmacological gap-junctional blockers (assaying the functionality of the formed gap-junctional couplings), and proliferation assays (to estimate the role of gap junctions for NSC well-being) to this end.Immunohistochemical staining and dye-transfer studies revealed that the NSCs already form functional gap junctions prior to engraftment, thereby creating a substrate for subsequent graft and host communication. The expression of Cx43 by grafted NSCs was decreased by neurotrophin-3 overexpression in NSCs and culturing of grafted tissue in serum-free Neurobasal B27 medium. Cx43 expression in NSC-derived cells also changed significantly following engraftment. In host cells the expression of Cx43 peaked following traumatic stimulation and then declined within two weeks, suggesting a window of opportunity for successful host cell rescue by NSC engraftment.Further investigation of the dynamic changes in gap junction expression in graft and host cells and the associated variations in intercellular communication between implanted and endogenous cells might help to understand and control the early positive and negative effects evident following neural stem cell transplantation and thereby optimize the outcome of future clinical NSC transplantation therapies.  相似文献   

16.
4-chloro-methoxyindole is a naturally occurring compound in Vicia faba which can easily react with nitrite to form a N-nitroso compound. In this in vitro study, the potential genotoxic effects of nitrosated 4-chloro-6-methoxyindole and its structural analogue 4-chloroindole were evaluated for the first time by using both Salmonella and Chinese hamster V79 cells. Additionally, the inhibition of gap junctional intercellular communication in V79 cells by these compounds was determined; this is a validated parameter for tumor-promoting activity. Most assays were also performed with nitrosated indole-3-acetonitrile, a naturally occurring compound in brassicas. Both nitrosated chloroindoles were highly mutagenic to Salmonella typhimurium TA100 without the need of exogenous metabolic activation and were potent inducers of Sister Chromatid Exchanges. Nitrosated indole-3-acetonitrile generated the same effects, although at much higher concentrations. Equivocal results were obtained for the nitrosated chloroindoles in a forward mutation assay using the hypoxanthine guaninephosphoribosyltransferase locus. All nitrosated indole compounds significantly inhibited gap junctional intercellular communication. These results indicate that nitrosated chloroindoles and nitrosated indole-3-acetonitrile should be considered as mutagens and agents with potential tumor-promoting capacity.Abbreviations BrdU 5-bromo-2-deoxyuridine - 4Cl 4-chloroindole - 4C6MI 4-chloro-6-methoxy-indole - DMSO dimethyl sulfoxide - EBSS Earle's balanced salt solution - EMS ethyl methanesulfonate - GJIC gap junctional intercellular communication - HBSS Hanks balanced salt solution - HGPRT hypoxanthine guaninephosphoribosyl transferase - I3A indole-3-acetonitrile - MNNG 1-methyl-1-nitroso-3-nitroguanidine - NOC N-nitroso compounds - NQO 4-nitroquinolone-N-oxide - SCE sister chromatid exchange - 6TG 6-thioguanine - TPA 12-O-tetradecanoylphorbol-13-acetate  相似文献   

17.
Gap-junctional intercellular communication is thought to be essential for maintaining cellular homeostasis and growth control. Its perturbation entails toxicological implications and it has been correlated with the in vivo tumor-promoting potential of chemicals. Little is known about the mechanism(s) responsible for the tumor promoters interference with the cellular coupling. Moreover, nongenotoxic carcinogens, as well as connexins (gap-junctional protein subunits), are known to be organ-/tissue-specific; this implies that the effect of different agents should be evaluated on their specific target, that is, connexin. To investigate the role of different connexins in regulating gap-junctional gating and to compare the properties of homotypic Junctional channels, we evaluated the effects of tissue-specific tumor promoters and anti-promoters on the viability and intercellular coupling (dye-transfer) of HeLa cells stably transfected with cDNAs coding for connexin(cx)43, cx40, cx26 and cx32. The results demonstrate that the transfectants possess individual Junctional permeabilities, differentially affected by the chemicals; they also show different sensitivities to the cytotoxic effect of the compounds. These findings confirm that connexin diversity may be responsible for the different gating properties of gap-junctional channels, being also suggestive for their separate functions and independent regulatory mechanisms.  相似文献   

18.
We analyzed by Fotonic Sensor, a fiber-optic displacement measurement instrument, the effects of heptanol on synchronized contraction of primary neonatal rat cardiac myocytes cultured at confluent density. We also examined the effect of heptanol on the changes in gap junctional intercellular communication by using the microinjection dye transfer method, and on intercellular Ca2+ fluctuation by confocal laser scanning microscopy of myocytes loaded with the fluorescent Ca2+ indicator fluo 3. In addition, we studied expression, phosphorylation, and localization of the major cardiac gap junction protein connexin 43 (Cx43) using immunofluorescence and Western blotting. At Day 6 of culture, numerous myocytes exhibited spontaneous, synchronous contractions, excellent dye coupling, and synchronized intracellular Ca2+ fluctuations. We treated the cells with 1.5, 2.0, 2.5, and 3.0 mmol/liter heptanol. With 1.5 mmol/liter heptanol, we could not observe significant effects on spontaneous contraction of myocytes. At 3.0 mmol/liter, the highest concentration used in the current experiment, heptanol inhibited synchronous contractions and even after washing out of heptanol, synchronous contraction was not rapidly recovered. On the other hand, at the intermediate concentrations of 2.0 and 2.5 mmol/liter, heptanol reversely inhibited synchronized contraction, gap junctional intercellular communication, and synchronization of intracellular Ca2+ fluctuations in the myocytes without preventing contraction and changes of intracellular Ca2+ in individual cells. Brief exposure (5-20 min) to heptanol (2.0 mmol/liter) did not cause detectable changes in the expression, phosphorylation, or localization of Cx43, despite strong inhibition of gap junctional intercellular communication. These results suggest that gap junctional intercellular communication plays an important role in synchronous intracellular Ca2+ fluctuations, which facilitate synchronized contraction of cardiac myocytes.  相似文献   

19.
Direct intercellular communication through gap junction channels is involved in the maintenance of tissue homeostasis and suppression of carcinogenesis. Gap-junctional communication is often altered in tumor cells but it can also be modulated in response to tumor promotors or inflammatory signals. In order to evaluate the effect of nongenotoxic compounds, suggested to be involved in tumor promotion, on gap junctional intercellular communication in the liver, we have developed a direct dye transfer method. The fluorescent dye Alexa Fluor 488 was iontophoretically injected into hepatocytes of freshly prepared, precision-cut mouse liver slices (250 microm). The area of dye spreading was monitored and quantified by microscopy. Comparison of dye spreading in connexin-32-deficient versus wild-type liver revealed a 96% decrease in connexin-32-deficient tissue. Induction of an acute phase response in connexin-32-deficient mice by intraperitoneal injection of lipopolysaccharide increased dye coupling by 33%, probably due to upregulation of connexin-26-containing gap junction channels.  相似文献   

20.
Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号