首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A combination of stable isotope studies and 14Cdating were used to identify the main sources andprocesses controlling streamwater DOC and TIC in atemperate non-forested watershed. 13Cvalues for terrestrial (–24.9 to –29.1) and aquatic(–30.5 to –33.5) plants were similar to valuesreported in the literature for similar ecosystems.13C values for DOC in soil solution andstreamwater were consistent with soil and terrestrialvegetation, indicating that the terrestrial ecosystemis the dominant source of aquatic DOC in thiswatershed. 13C values of soil atmosphereCO2 (–17.2 to –25.2) were slightly lessnegative than would be expected for production viaaerobic soil microbial decomposition and rootrespiration. There was a close correspondence between13C values (–15.5 to –21.5) forstreamwater TIC and soil atmospheric CO2 in thecentral part of the catchment where the stream drainsCO2-rich peats. 14C dating showed thatalthough peat has been accumulating in the watershedfor at least 2700 years, DOC in soil pore water andstreamwater contains carbon of predominantly recentorigin (post-AD 1955).  相似文献   

2.
Summary Foliar samples were obtained from symbiotic nitrogen-fixers and control plants (non-fixers) along elevational and primary successional gradients in volcanic sites in Hawai'i. Most control plants had negative 15N values (range-10.1 to +0.7), while most nitrogen-fixers were near 0. Foliar 15N in the native tree Metrosideros polymorpha did not vary with elevation (from sea level to tree-line), but it did increase substantially towards 0 on older soils. The soil in an 197-yr-old site had a 15N value of approximately-2, while in a 67000-yr-old site it was +3.6. We suggest that inputs of 15N-depleted nitrogen from precipitation coupled with very low nitrogen outputs cause the strongly negative 15N values in non-nitrogen-fixing plants on early successional sites.  相似文献   

3.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

4.
Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems   总被引:10,自引:0,他引:10  
Summary The ratio of stable carbon isotopes (13C) in plants and animals from Malaysian mangrove swamps, coastal inlets, and offshore waters was determined. Vascular plants of the swamps were isotopically distinct ( x±s.d.=-27.1±1.2) from plankton (-21.0±0.3) and other algae (-18.7±2.2). Animals from the swamps (-20.9±4.1) and inlets (-19.8±2.5) had a wide range of isotope ratios (-28.6 to-15.4), indicating consumption of both mangrove and algal carbon. Several commercially important species of bivalves, shrimp, crabs, and fish obtained carbon from mangrove trees. Mangrove carbon was carried offshore as detritus and was isotopically distinguishable in suspended particulate matter and sediments. Animals collected from 2 to 18 km offshore, however, showed no isotopic evidence of mangrove carbon assimilation, with ratios (-16.5±1.1, range-19.1 to-13.1) virtually identical to those reported for similar animals from other plankton-based ecosystems. Within groups of animals, isotope ratios reflected intergencric and interspecific differences in feeding and trophic position. In particular, there was a trend to less negative ratios with increasing trophic level.  相似文献   

5.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

6.
Stable isotopes (13C, D) and radiocarbon weremeasured in methane bubbles emitted from rice paddies and swamps in southernThailand. Methane emitted from the Thai rice paddies was enriched in13C (mean 13C; –51.5 ±7.1 and–56.5 ± 4.6 for mineral soil and peat soil paddies,respectively)relative to the reported mean value of methane from temperate rice paddies(– 63 ± 5). Large seasonal variation was observed in13C(32) in the rice paddies, whereas variationinD was much more smaller (20), indicating that variation in13C is due mainly to changes in methane production pathways.Values of 13C were lower in swamps (–66.1 ±5.1)than in rice paddies. The calculated contribution of acetate fermentation from13C value was greater in rice paddies (mineral soils:62–81%, peat soils: 57–73%) than in swamps (27–42%). Din methane from Thai rice paddies (–324± 7 (n=46)) isrelativelyhigher than those from 14 stations in Japanese rice paddies ranging from–362 ± 5 (Mito: n=2) to –322 ± 8(Okinawa: n=3), due tohigher D in floodwaters. 14C content in methane produced fromThai rice paddies (127±1 pMC) show higher 14Cactivity compared with previous work in paddy fields and those from Thai swamps(110±2 pMC).  相似文献   

7.
This paper presents a large data set on carbon isotope composition (13C) of modern soils which were collected under the main vegetation communities along an altitude of 1250–5500m above sea level in the Qinghai-Tibetan Plateau. The 13C values of 198 samples range from –28.6 to –15.1 versus PDB and exhibit a clean relation to different vegetation communities from forest (–25.9±1.2) to shrub (–24.7±1.4), steppe (–23.1±1.3), alpine meadow (–23.6±0.7), alpine desert steppe (–21.3±1.6), and alpine desert (–18.9±2.5). We attributed the observed variability in 13C values to that the mean annual precipitation (MAP) and the mean annual temperature (MAT) are the main factors controlling the distribution of vegetation types in the Tibetan Plateau, which causes the change in carbon isotope composition of modern soils at any given altitude. The result of both linear and nonlinear regression analyses also confirms that MAP and MAT are the major factors affecting the 13C values of surface soils. In the absence of favorable moisture and temperature conditions, low pCO2 alone is not sufficient to cause the distinct changes in carbon isotope composition of modern soils in the Tibetan Plateau. This study provides some fundamental information on the carbon isotope composition of terrestrial carbon pools and bears some practical significance for the use of carbon isotope data to document vegetation changes and environmental conditions of the high plateau in the past.  相似文献   

8.
Despite theories of large-scale movement and assimilation of carbon in estuaries, recent evidence suggests that in some estuaries much more limited exchange occurs. We measured the fine-scale movement and assimilation of carbon by resident macroinvertebrates between adjacent saltmarsh and mangrove habitats in an Australian estuary using 13C analysis of animals at different distances into adjacent patches of habitat. 13C values of crabs (Parasesarma erythrodactyla –15.7 ± 0.1, Australoplax tridentata –14.7 ± 0.1) and slugs (Onchidina australis –16.2 ± 0.3) in saltmarsh closely matched that of the salt couch grass Sporobolus virginicus (–15.5 ± 0.1). In mangroves, 13C values of crabs (P. erythrodactyla –22.0 ± 0.2, A. tridentata –19.2 ± 0.3) and slugs (–19.7 ± 0.3) were enriched relative to those of mangroves (–27.9 ± 0.2) but were more similar to those of microphytobenthos (–23.7 ± 0.3). The 13C values of animals across the saltmarsh-mangrove interface fitted a sigmoidal curve, with a transition zone of rapidly changing values at the saltmarsh-mangrove boundary. The width of this transition indicated that the movement and assimilation of carbon is limited to between 5 and 7 m. The 13C values of crabs and slugs, especially those in saltmarsh habitat, clearly indicate that the movement and assimilation of carbon between adjacent saltmarsh and mangrove habitat is restricted to just a few metres, although some contribution from unmeasured sources elsewhere in the estuary is possible. Such evidence demonstrating the extent of carbon movement and assimilation by animals in estuarine habitats is useful in determining the spatial arrangement of habitats needed in marine protected areas to capture food web processes.  相似文献   

9.
Larvae ofElminius modestus (Darwin) from four different populations (Portobello, Leigh, Doubtless Bay [New Zealand] and Helgoland [North Sea]) were reared at different salinity and temperature combinations. The larvae ofE. modestus from Helgoland developed successfully at a wide range of temperature (6° to 24 °C) and salinity (20 to 50 S). Mortality was highest at 10 S; only at 12° and 18 °C did a small percentage develop to the cypris. The larvae from New Zealand were reared at a temperature range of 12°–24 °C at 20, 30 and 40 S; mortality increased in all populations at all salinities with decreasing temperature and was extremely high at 12 °C and 40 S. The temperature influence on larval duration could be described in all cases by a power function. No significant differences in temperature influences on developmental times between the tested salinities were found, except for the Portobello population at 20 S. Significant differences were found in the temperature influence on larval development between the populations from Helgoland and the North Island of New Zealand (Leigh, Doubtless Bay). No differences were found between the Helgoland and Portobello population. The pooled data for the temperature influence on the larval development of the three tested New Zealand populations at 20, 30 and 40 S and the pooled Helgoland data at 20, 30 and 40 S show highly significant differences.Larval size (stage VI) was influenced by experimental conditions. The larvae grew bigger at low temperatures and attained their maximum size at 30 S (Helgoland). There was a strong reduction in larval size at temperatures from 18° to 24 °C. The larvae of the New Zealand populations were smaller than those from Helgoland. The greatest difference in size existed between the larvae from Portobello and Helgoland.  相似文献   

10.
A method is described whereby arrays of samples ofClupea pallasi eggs may be stored during their preparation. The high fertilization potential retained by the eggs during short-term storage allows them to be fertilized synchronously when sample preparation is complete. A variation of the dry method of storage retained maximum fertilization potential (80–85%) of the eggs for about 1 hr, and of milt dilution (18 with 17 S sea water), about 7 hr. Following dry storage, eggs fertilized in salinities of 0–45 showed maximum rates of fertilization in salinities of 10–20, and fertilization rates 50% in salinities of 4.5–42. Salinities of fertilization influenced egg diameter, median hatching time, and larval length at hatching in egg samples transferred 21/2 hr after fertilization to an incubation salinity of 17 at 7°C. Fertilization rates were higher (90–95%) for eggs stored in 17 S at 7°C prior to fertilization. Under such wet storage conditions, maximum fertilization pontential was retained for about 2 hr. Highest fertilization rates (95–96%) were obtained for eggs stored and fertilized in salinities of 12–15. For the species and the area of origin considered (British Columbia), wet storage of eggs should result in maximum fertilization when the eggs are stored at 4°C for a period not greater than 2 hr prior to fertilization in the 12–15 S storage medium.Prepared under the auspices of the Canadian-German Scientific and Technical Cooperation Agreement.  相似文献   

11.
The relative contribution of autotrophic carbon sources (aquatic macrophytes, flooded forest, phytoplankton) for heterotrophic bacterioplankton was evaluated in a floodplain lake of the Central Amazon. Stable carbon isotopes (13C) were used as tracers. Values of 13C of different autotrophic sources were compared to those of dissolved organic carbon (DOC) and those of bacterially produced CO2.The percentage of carbon derived from C4 macrophytes for bacterially produced CO2 was the highest, on average 89%. The average 13C value of CO2 from bacterial respiration was –18.5 ± 3.3. Considering a fractionation of CO2 of 3 by bacterial respiration, 13C value was –15.5, near C4 macrophyte 13C value (–13.1).The average value of total DOC 13C was –26.8 ± 2.4. The percentage of C4 macrophytes carbon for total DOC was on average 17%. Considering that bacteria consume mainly carbon from macrophytes, the dominance of C3 plants for total DOC probably reflects a faster consumption of the former source, rather than a major contribution of the latter source.Heterotrophic bacterioplankton in the floodplain may be an important link in the aquatic food web, transferring the carbon from C4 macrophytes to the consumers.  相似文献   

12.
Summary 1. Rates of growth (length increase of stolons) and of asexual reproduction (increase in number of polyps) were determined in secondaryClava multicornis colonies of a clone exposed to 12 different combinations of water temperature and salinity (12°, 17°, 22° C; 16 , 24 , 32 , 40 S). Sexual reproduction (via gonophores) has been observed only at 12° and 17° C; temperature and salinity ranges are narrower for sexual than for asexual reproduction.2. The data obtained are insufficient for a detailed analysis; they provide, however, interesting insights into the variability of growth and reproduction ofC. multicornis caused by different intensities of temperature and salinity.3. It appears that temperature requirements for maximum colony increase are reduced as the colony grows older.4. One feeding period per 24 hours seems insufficient for maximum growth and reproduction at the higher temperature levels, especially at 22° C.5. The different degrees of environmental stress endured during the initial period of transfer into the test combinations of temperature and salinity have affected the resulting colony size at least up to an age of 39 days. More appropriate criteria for assessment of rates of growth and reproduction are therefore the doubling times (number of days within which stolon length and polyp numbers taken 20 days after initiation of experiments have doubled).6. On the basis of doubling time values, increase in stolon length is progressively reduced with increasing water temperature (12°, 17°, 22° C). At 12° and 17° C stolons grow fastest in 32 , followed by 24 , 16 and 40 S; at 22° C stolon growth rates are identical in 32 and 24 S.7. Doubling times of polyp numbers per colony show a less obvious trend. In 56-day-old colonies, however, stolon length and polyp number are modified to similar degrees by the various temperatures and salinities offered. The sequence of temperatures causing fastest increase in polyp number is 12°>17°>22° C; the respective sequence of salinities reads: 24 , 32 , 16 , 40 S.8. Stolon length and polyp number per colony increase exponentially; most curves obtained exhibit undulations indicating endogenous growth rhythms.9. During the initial period of transfer into the final test media, asexual reproduction via budding seems to have been stimulated by a reduction in salinity.10. The doubling times obtained forC. multicornis are considerably longer than those found forCordylophora caspia and indicate that our culture conditions may have been suboptimal.
Wachstum und Reproduktion als Funktion von Temperatur und Salzgehalt beiClava multicornis (Cnidaria, Hydrozoa)
Kurzfassung Einzelpolypen eines Klons vonC. multicornis Forskål wurden schrittweise in 12 verschiedene Temperatur-Salzgehalts-Kombinationen überführt und — während sie zu neuen Kolonien heranwuchsen — das Längenwachstum ihrer Stolonen, die Geschwindigkeit ihrer asexuellen Vermehrung durch Knospung neuer Hydranthen sowie die Gonophorenausbildung (sexuelle Fortpflanzung) registriert. Die erhaltenen Daten sind unzureichend für eine detaillierte Analyse, gewähren jedoch interessante Einblicke in die Bedeutung der verschiedenen Temperatur- und Salzgehaltsbedingungen für Wachstum und Vermehrung. Die anfängliche, schrittweise Überführung in die Testmedien verursacht per se Leistungsunterschiede, deren Auswirkungen sich mindestens bis zu einem Alter von 39 Tagen verfolgen lassen. Doubling times stellen daher objektivere Kriterien dar als absolute Zuwachswerte. Die doubling times von Kolonien, welche länger als 20 Tage in den Testmedien gewachsen waren, zeigen eine Verringerung der Stolonenzuwachsrate mit steigender Temperatur (12°, 17°, 22° C). Die Reihenfolge der fördernden Wirkung der einzelnen Salzgehaltsstufen ergibt sich zu 32 , 24 , 16 , 40 S. Im Prinzip ähnliche Verhältnisse liegen hinsichtlich der asexuellen Vermehrungsrate vor. Bemessen an den getesteten Kriterien scheinen die Temperaturansprüche mit zunehmendem Koloniealter abzunehmen. Die errechneten doubling times sind wesentlich länger als beiCordylophora; möglicherweise deutet dieser Unterschied auf inadäquate Kulturbedingungen (Fütterung, Wasserbewegung) hin.
  相似文献   

13.
Zusammenfassung 1. Die Eier von Dorsch (Gadus morhua L.), Flunder (Pleuronectes flesus L.) und Scholle (Pleuronectes platessa L.) der westlichen Ostsee wurden unter kombinierten Salzgehalts-Temperaturbedingungen (0°–16° C, 7–42 S) erbrütet. Es wurde untersucht, inwieweit die Embryonalentwicklung durch das Zusammenwirken von Temperatur und Salzgehalt beeinflußt wird.2. Die optimalen Temperatur- und Salzgehaltsbereiche für die Erbrütung von Dorsch, Flunder und Scholle wurden festgestellt. Für den Dorsch konnten drei Versuche mit unterschiedlichem Material durchgeführt werden. Die optimalen Temperaturund Salzgehaltskombinationen für die Erbrütung von Dorscheiern betrugen: (a) 6°–8° C bei 25–30 S, (b) 4° C bei 20–33 S und (c) 4°–6° C bei 33 S. Für die Flundereier wurde als optimale Temperatur-Salzgehaltskombination 4° C und 33 S gefunden. Die untersuchten Scholleneier entwickelten sich bei 6° C und 20 S am besten.3. In nicht-optimalen Temperatur- und Salzgehaltsbereichen war ein Absinken der Überlebensrate und verstärktes Auftreten morphologischer Anomalien an Embryonen und Larven zu verzeichnen. Als charakteristische Schädigungen traten Verkrümmungen der caudalen Körperregion auf. Larven, die in schwach salzigem Wasser gehalten wurden (20 und 15 S), litten an Dottersackquellung, was bei den Flunderlarven zu Kieferdeformationen führte.4. Als wahrscheinliche Ursache für die Verkrümmungen und Verwachsungen des Schwanzes wurde ein durch extreme Temperaturen allgemein gestörtes Zusammenwirken der Enzyme diskutiert.5. Die Wirkung hoher und niedriger Salzgehalte wurde in der Diskussion auf eine Störung im embryonalen Stoffwechsel zurückgeführt, die durch Änderung im Ionenmilieu der Zelle hervorgerufen wird.6. Mit zunehmender Aussüßung des Erbrütungswassers konnte bei allen untersuchten Eiern Entwicklungsverlangsamung beobachtet werden. Bei hohen Erbrütungstemperaturen wurden die Unterschiede in der Entwicklungsgeschwindigkeit geringer.7. Der für die Erbrütung optimale Salzgehalt änderte sich in Abhängigkeit von der Inkubationstemperatur. Ebenfalls war die optimale Erbrütungstemperatur in Abhängigkeit vom Salzgehalt des Erbrütungsmediums veränderlich. Extrem niedrige Salzgehalte (15 und 20 S) wurden im Bereich der Optimaltemperaturen oder bei niedrigen Temperaturen besser ertragen.8. Bei allen drei untersuchten Fischarten wurde das Auftreten von Brackwasserrassen in der Ostsee erörtert und für wahrscheinlich gehalten.
Rearing the eggs of cod(Gadus morhua), flounder(Pleuronectes flesus) and plaice(Pleuronectes platessa) under combined temperature and salinity conditions
Eggs of Baltic cod (Gadus morhua L.), flounder (Pleuronectes flesus L.) and plaice (Pleuronectes platessa L.) have been reared under combined temperature and salinity conditions (0°–16° C, 7–42 S). Combined temperature and salinity influences on embryonic development were investigated. Optimum temperatures for the rearing of cod eggs range from 4° to 8° C, and optimum salinities from 20 to 33 S. Flounder eggs develop best at 4° C and in 33 S, and plaice eggs at 6° C and in 20 S. Suboptimum conditions result in lower percentages of larval hatching and survival, and increased morphological anomalies such as curvature of tail and body. Low salinities (20 and 15 S) cause swollen yolk sacs which, in experiments with flounder eggs, lead to jaw deformities. Rearing at low salinity decreases speed of development. Optimum salinity varies as a function of incubation temperature and influences variations in optimum rearing temperature. Extremely low salinities (20 and 15 S) are tolerated best at optimum or lower temperatures. From the results of these experiments it can be concluded that brackish water races of these fishes are likely to exist in the Baltic Sea.


Diese Arbeit wurde als Dissertation unter der Leitung von Herrn Prof. Dr.K. Lillelund am Institut für Hydrobiologie und Fischereiwissenschaft der Universität Hamburg angefertigt. Für die Drucklegung wurde die Arbeit geringfügig gekürzt und in ihrem Wortlaut abgeändert.  相似文献   

14.
Carbon isotopic composition was used to assess the linkage between three different potential sources of energy and the community in the shallow coastal zone of Martel Inlet. Stable 13C ratios ranged from –28.7 for the zooplankton plus phytoplankton to –14.4 for the grazer Nacella concinna. Microphytobenthos (–16.7) was considerably more enriched in 13C than were suspended particulate matter (SPM) (–25.6) and macroalgal fragments (–23.6 and –21.1), indicating that stable carbon isotope analysis might be used to discern the relative contribution of these sources of primary production. There is a benthic-pelagic coupling between plankton, benthic suspensivores, the ophiuroid Ophionotus victoriae and the icefish Chaenocephalus aceratus. Benthic grazers such as N. concinna, deposit feeders such as Yoldia eightsi and the nematodes showed a tight coupling with the microphytobenthos and the sediment. Some omnivorous/depositivorous polychaetes, echinoids, amphipods and the fish Notothenia coriiceps showed values close to the ratios of the macroalgal fragments. Benthic carnivores and/or scavengers were generally enriched over suspensivores and depleted in relation to microphytobenthos grazers, showing a considerable overlap in 13C values throughout the food web, without any clear coupling with the primary sources of organic matter. The trophic web in the shallow zone of high benthic production and under seasonal ice cover in the Antarctic is more complex than it is in shelf areas, where SPM is the main food source. The soft-bottom community in the shallow zone of Martel Inlet is enriched in 13C due to the significant input of carbon from the microphytobenthos and macroalgal fragments.  相似文献   

15.
E. Medina  P. Minchin 《Oecologia》1980,45(3):377-378
Summary The contribution of soil respiration to the photosynthesis of the shade flora in the Amazon forest was evaluated by measuring the 13C values of leaves collected at different levels in two forest communities. Canopy leaves have an average 13C of-30.5 in the podsol forest and-28.7 in the laterite forest. Leaves from plants in the lower forest strata have a significantly lower value of-35.2 in the podsol forest and-34.3 in the laterite forest.Mailing address of the first author: Before May 31, 1980: Department of Biological Sciences, Stanford University, Stanford, California 94305 USA. After May 31: Centro de Ecologia, IVIC Aptdo. 1827. Caracas, Venezuela  相似文献   

16.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

17.
Schmidt  Olaf  Scrimgeour  Charles M. 《Plant and Soil》2001,229(2):197-202
The use of 13C isotope tracer techniques in terrestrial ecology has been restricted by the technical requirements and high costs associated with the production of 13C enriched plant material by 13CO2 release in labelling chambers. We describe a novel, simple and relatively inexpensive method for the small-scale production of 13C and 15N labelled plant material. The method is based on foliar feeding of plants with a urea solution (97 atom% 13C, 2 atom% 15N) by daily misting. Maize was grown in a greenhouse in a compost–soil mixture and enclosed in clear polythene bags between urea applications. Final enrichment in 27 d old maize shoots was 211 13C (1.34 atom% 13C) and 434 15N (0.52 atom% 15N). Enrichments of hot-water extractable fractions (289 13C, 469 15N) were only slightly higher than those observed in plant bulk material, which suggests that daily urea applications ensured fairly uniform labelling of different biochemical fractions and plant tissues. Recovery of applied excess 13C and 15N in plant shoots was 22% and 42%, respectively. Roots were less enriched (21 13C and 277 15N), but no attempts were made to recover roots quantitatively.  相似文献   

18.
Apostichopus (= Stichopus) japonicus blastulae and gastrulae were acclimated for 18 h to salinities of 32 (control), 24 and 22 (the lower limit of the range of tolerance), and 20 (below the range of tolerance). Acclimation to 20 resulted in the appearance of teratic larvae, most of which subsequently died. Acclimation to 24, 22, and 20 led to a shift in the range of tolerance of the larvae at further stages of development. With a decrease in salinity, acclimated larvae developed more successfully than unacclimated larvae. Acclimated larvae attained the pentactula stage and settled at a salinity range of 32–20; unacclimated larvae, at 32–22. At different stages of development, acclimated larvae survived greater decreases in salinity than unacclimated larvae. The acclimation effects could be traced up to metamorphosis and settling, i.e., two weeks after the end of the acclimation process.  相似文献   

19.
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (D) of xylem and soil water, soil volumetric water content (v), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in v was observed at 90–120 cm depth in both years. Mean soil water D during the dry season was –19 at 0–30 cm, –34 at 30–60 cm, and –50 at 90–120 cm. Average values of xylem D among the liana species ranged from –28 to –44 during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem D values (–41 to –62), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size.  相似文献   

20.
Summary Measurements of leaf thickness and 13C value were obtained for twenty species and three intergeneric hybrids of the Crassulaceae. The data include plants growing in their native habitats and also in greenhouse cultivation. There is a strong relationship between leaf thickness and leaf 13C values. The plants with the thickest leaves of ca. 7 to 11 mm had 13C values ranging from -11.5 to -13.8. Plants with leaves that were thinner than 2.0 mm all had 13C values that were more negative than -23. Plants having intermediate leaf thickness possessed intermediate 13C values. The leaf tissue of four genotypes spanning the range of leaf thicknesses all exhibited a two-fold or greater nocturnal increase in titratable acidity. It appears that the differences in leaf thickness and 13C values among the tested species are genetically determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号