首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical goal in cell biology is to develop a systems-level perspective of eukaryotic cell cycle controls. Among these controls, a complex signaling network (called ‘checkpoints’) arrests progression through the cell cycle when there is a threat to genomic integrity such as unreplicated or damaged DNA. Understanding the regulatory principles of cell cycle checkpoints is important because loss of checkpoint regulation may be a requisite step on the roadway to cancer. Mathematical modeling has proved to be a useful guide to cell cycle regulation by revealing the importance of bistability, hysteresis and time lags in governing cell cycle transitions and checkpoint mechanisms. In this report, we propose a mathematical model of the frog egg cell cycle including effects of unreplicated DNA on progression into mitosis. By a stepwise approach utilizing parameter estimation tools, we build a model that is grounded in fundamental behaviors of the cell cycle engine (hysteresis and time lags), includes new elements in the signaling network (Myt1 and Chk1 kinases), and fits a large and diverse body of data from the experimental literature. The model provides a validated framework upon which to build additional aspects of the cell cycle checkpoint signaling network, including those control signals in the mammalian cell cycle that are commonly mutated in cancer.  相似文献   

2.
Mitotic entry and exit are switch‐like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.  相似文献   

3.
大多数物种的卵母细胞在减数分裂前都要经历长时间停滞,其中cAMP对卵母细胞减数分裂停滞具有重要作用,本研究关注c AMP对卵母细胞减数分裂的影响及其机制。本研究通过将卵母细胞与cAMP预孵育,再用胰岛素刺激研究胰岛素诱导的卵母细胞成熟的影响,接着本研究通过显微注射和Zeiss 100TV显微镜分析cAMP对PKA在卵母细胞中定位的影响,并且本研究用Western blotting的方法研究cAMP/PKA对mos蛋白的表达和MAPK蛋白磷酸化的影响。结果显示,本研究通过亲和层析得到了高纯度的PKA蛋白,且cAMP/PKA能够抑制卵母细胞的成熟,而PKA的热稳定抑制剂PKI能够解除PKA对卵母细胞减数分裂的抑制,cAMP/PKA也能够影响mos的积累以及MAPK的磷酸化。cAMP能够影响PKA在卵母细胞中的定位,cAMP/PKA能够通过影响mos积累抑制卵母细胞的减数分裂,这可能与cAMP能够抑制MAPK磷酸化有关。  相似文献   

4.
We have previously shown that bovine oocytes parthenogenetically activated after 40 hours (hr) of in vitro maturation proceed through the cell cycle faster than those after 20 hr of maturation. In the present study, we used this model of different speed of nuclear progression to investigate the correlation of two hallmarks of nuclear events, exit of metaphase arrest and pronuclear formation, with dynamics of MPF and MAPK. Bovine oocytes were matured in vitro for 20 hr (young) or 40 hr (aged) and activated in 7% ethanol followed by incubation in cycloheximide for 0, 0.5, 1, 3, 5, or 7 hr. Activity of MPF and MAPK was lower in aged than young oocytes. The responses to oocyte activation by both the two kinases and nuclear progression were faster in aged than in young oocytes. The activity of MPF declined to undetectable levels (P < 0.05) as early as 0.5 hr after activation in aged oocytes, while this did not happen in young oocytes until 3 hr after activation. The inactivation of MAPK occurred approximately 2 hr earlier in aged oocytes (5 hr post-activation) than in young oocytes (7 hr post-activation). Furthermore, the decline in MPF activity preceded that of MAPK in both young and aged oocytes by about 2 hr. The decrease in activity of MPF and MAPK corresponded with the exit from meiosis and pronuclei formation regardless of the speed of nuclear progression. Despite dramatic changes in activity of MPF and MAPK, the levels of Cdc2 and Erk2 proteins were unchanged (P > 0.05) during the first 7 hr of activation. These observations suggest that inactivation of MPF and MAPK are pre-requisite for the release from metaphase arrest and formation of pronuclei in bovine oocytes.  相似文献   

5.
Phosphorylation of proteins is an important mechanism used to regulate most cellular processes. Recently, we completed an extensive phosphoproteomic analysis of the core proteins that constitute the Saccharomyces cerevisiae centrosome. Here, we present a study of phosphorylation sites found on the mitotic exit network (MEN) proteins, most of which are associated with the cytoplasmic face of the centrosome. We identified 55 sites on Bfa1, Cdc5, Cdc14 and Cdc15. Eight sites lie in cyclin-dependent kinase motifs (Cdk, S/T-P), and 22 sites are completely conserved within fungi. More than half of the sites were found in centrosomes from mitotic cells, possibly in preparation for their roles in mitotic exit. Finally, we report phosphorylation site information for other important cell cycle and regulatory proteins.  相似文献   

6.
Localisation of Protein Kinase A (PKA) by A-Kinase Anchoring Proteins (AKAPs) is known to coordinate localised signalling complexes that target cAMP-mediated signalling to specific cellular sub-domains. The cAMP PKA signalling pathway is implicated in both meiotic arrest and meiotic resumption, thus spatio-temporal changes in PKA localisation during development may determine the oocytes response to changes in cAMP. In this study we aim to establish whether changes in PKA localisation occur during oocyte and early embryo development.Using fluorescently-labelled PKA constructs we show that in meiotically incompetent oocytes PKA is distributed throughout the cytoplasm and shows no punctuate localisation. As meiotic competence is acquired, PKA associates with mitochondria. Immature germinal vesicle (GV) stage oocytes show an aggregation of PKA around the GV and PKA remains co-localised with mitochondria throughout oocyte maturation. After fertilisation, the punctuate, mitochondrial distribution was lost, such that by the 2-cell stage there was no evidence of PKA localisation. RT-PCR and Western blotting revealed two candidate AKAPs that are known to be targeted to mitochondria, AKAP1 and D-AKAP2. In summary these data show a dynamic regulation of PKA localisation during oocyte and early embryo development.  相似文献   

7.
On fertilisation, gametes undergo epigenetic reorganisation and re-establish totipotency. Here, we investigate links between chromatin remodelling and asymmetric maintenance of DNA methylation in the early mouse embryo. Using antibodies for lysine specific H3 methylation reveals that the male pronucleus is negative for di- and trimethyl H3-K9 yet the female is positive for these residues. However, the male is positive for monomethyl H3-K9 and H3-K27 and these signals increase during pronuclear maturation. Non-histone chromatin proteins of the Polycomb group are found in the paternal compartment as early as sperm decondensation. However, trimethyl H3-K27 is not observed in the male until the completion of DNA replication. Heterochromatin protein 1 beta (HP1beta) is abundant in the male pronucleus, despite the absence of di- and trimethyl H3-K9, and co-localises with monomethyl H3-K9. Recent evidence identifies monomethyl H3-K9 as the preferred substrate of Suvar39h, the histone methyl transferase (HMT) responsible for heterochromatic H3-K9 trimethylation. The association of HP1beta with monomethyl H3-K9 may assist in preventing further modification of H3-K9. Association of dimethylation but not trimethylation of H3-K9 with DNA methylation, in the female pronucleus, suggests a mechanistically significant link. These differences begin to provide a chromatin based explanation for paternal-specific active DNA demethylation and maternal specific protection in the mouse.  相似文献   

8.
In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway plays a major role in the regulation of metabolism, stress resistance and cell cycle progression. We extend here a mechanistic model of the Ras/cAMP/PKA pathway that we previously defined by describing the molecular interactions and post-translational modifications of proteins, and perform a computational analysis to investigate the dynamical behaviors of the components of this pathway, regulated by different control mechanisms. We carry out stochastic simulations to consider, in particular, the effect of the negative feedback loops on the activity of both Ira2 (a Ras-GAP) and Cdc25 (a Ras-GEF) proteins. Our results show that stable oscillatory regimes for the dynamics of cAMP can be obtained only through the activation of these feedback mechanisms, and when the amount of Cdc25 is within a specific range. In addition, we highlight that the levels of guanine nucleotides pools are able to regulate the pathway, by influencing the transition between stable steady states and oscillatory regimes.  相似文献   

9.
10.
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6 days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.  相似文献   

11.
The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor for Ras proteins whose catalytic domain is highly homologous to Ras-guanine nucleotide exchange factors from higher eukaryotes. In this study, glucose-induced Ras activation and cAMP response were investigated in mutants lacking the N-terminal domain of Cdc25 or where the entire CDC25 coding sequence was substituted by an expression cassette for a mammalian guanine nucleotide exchange factor catalytic domain. Our results suggest that an unregulated, low Ras guanine nucleotide exchange factor activity allows a normal glucose-induced cAMP signal that appears to be mediated mainly by the Gpr1/Gpa2 system, but it was not enough to sustain the glucose-induced increase of Ras2-GTP normally observed in a wild-type strain.  相似文献   

12.
13.
Orderly execution of two critical events during the cell cycle––DNA replication and chromosome segregation––ensures the stable transmission of genetic materials. The cohesin complex physically connects sister chromatids during DNA replication in a process termed sister chromatid cohesion. Timely establishment and dissolution of sister chromatid cohesion is a prerequisite for accurate chromosome segregation, and is tight regulated by the cell cycle machinery and cohesin-associated proteins. In this review, we discuss recent progress in the molecular understanding of sister chromatid cohesion during the mitotic cell cycle.  相似文献   

14.
In this study we examined the role of the cAMP/protein kinase A (PKA) pathway in affecting IOUD2 ES cell self-renewal and differentiation, Oct4 expression, and cell proliferation. Forskolin, the adenylate cyclase agonist, alone had no effect on ES cell self-renewal. However, when cells were treated with the differentiation-inducing agent retinoic acid, forskolin significantly promoted ES cell self-renewal. Effectively, forskolin rescued cells from a pathway of differentiation. Culturing ES cells in the presence of the phosphodiesterase inhibitor IBMX had no effect on ES cell self-renewal but did increase cell proliferation. In the presence of 100 μM IBMX without LIF, 10 μM forskolin significantly increased ES cell self-renewal. The cell permeable cAMP analog 8-Br-cAMP (1 and 5 mM) promoted ES cell differentiation in the presence of LIF, while in the absence of LIF, it promoted ES cell self-renewal. The effect of the PKA specific inhibitors H89 and KT5720 on Oct4 expression was, again, LIF-dependent. In the presence of LIF, these inhibitors decreased Oct4 expression, while they increased Oct4 expression in the absence of LIF. In general, ES cells maintained on a self-renewal pathway through the presence of LIF show little effect from altered cAMP signaling except at higher levels. However, in strict contrast, when ES cell are on a differentiation pathway through exposure to retinoic acid or the removal of LIF, altering cAMP levels can rescue the self-renewal process promoting Oct4 expression. This study clearly shows that the cAMP/PKA pathway plays a role in ES cell self-renewal pathways. This work was partly funded by the Millennium Research Fund National University of Ireland Galway.  相似文献   

15.
Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization in reconstructed oocytes.  相似文献   

16.
The inhibition of cell proliferation by ouabain has been analyzed with respect to the cell cycle. Three lines of evidence indicate that growth rate is modified by altering to different degrees the rate of progress through stages of the cell cycle: (1) a three hour lag occurs between the time of ouabain addition and the inhibition of proliferation; (2) ouabain must be present at least two to four hours prior to the mitotic burst of synchronized cells for inhibition of mitosis to occur; (3) parasynchrony is observed when cells are resuspended in ouabain-free medium after 12 hours of exposure to ouabain. Analysis of the distribution of cells in each of the stages of the cell cycle at various times during ouabain treatment reveals a progressive increase in the fraction of cells in S with a concomitant decrease in the percent of cells in each of the other stages. These results indicate that the prolongation of the cell cycle time in the presence of ouabain is due primarily to an S stage block.  相似文献   

17.
The target of rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol 3-kinase-related kinases. TOR proteins are found at the core of two evolutionary conserved complexes, known as TORC1 and TORC2. In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. TORC2 has been implicated in a wide variety of functions; however, the signals that regulate TORC2 activity have so far remained obscure. TORC2 has one known direct substrate, the AGC kinase Gad8, which is related to AKT in human cells. Gad8 is phosphorylated by TORC2 at Ser-546 (equivalent to AKT Ser-473), leading to its activation. Here, we show that glucose is necessary and sufficient to induce Gad8 Ser-546 phosphorylation in vivo and Gad8 kinase activity in vitro. The glucose signal that activates TORC2-Gad8 is mediated via the cAMP/PKA pathway, a major glucose-sensing pathway. By contrast, Pmk1, similar to human extracellular signal-regulated kinases and a major stress-induced mitogen activated protein kinase (MAPK) in fission yeast, inhibits TORC2-dependent Gad8 phosphorylation and activation. Inhibition of TORC2-Gad8 also occurs in response to ionic or osmotic stress, in a manner dependent on the cAMP/PKA and Pmk1-MAPK signaling pathways. Our findings highlight the significance of glucose availability in regulation of TORC2-Gad8 and indicate a novel link between the cAMP/PKA, Pmk1/MAPK, and TORC2-Gad8 signaling.  相似文献   

18.
Wang F  Kou Z  Zhang Y  Gao S 《Biology of reproduction》2007,77(6):1007-1016
Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.  相似文献   

19.
cAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP]i in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2−/−) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP]i can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer.  相似文献   

20.
Analysis of fadA and pkaA mutants in the filamentous fungus Aspergillus nidulans demonstrated that FadA (Galpha) stimulates cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity resulting, at least in part, in inhibition of conidiation and sterigmatocystin (ST) biosynthesis. In contrast, cAMP added to the growth medium stimulates aflatoxin (AF) synthesis in Aspergillus parasiticus. Our goal was to explain these conflicting reports and to provide mechanistic detail on the role of FadA, cAMP, and PKA in regulation of AF synthesis and conidiation in A. parasiticus. cAMP or dibutyryl-cAMP (DcAMP) were added to a solid growth medium and intracellular cyclic nucleotide levels, PKA activity, and nor-1 promoter activity were measured in A. parasiticus D8D3 (nor1::GUS reporter) and TJYP1-22 (fadAGA2R, activated allele). Similar to Tice and Buchanan [34], cAMP or DcAMP stimulated AF synthesis (and conidiation) associated with an AflR-dependent increase in nor-1 promoter activity. However, treatment resulted in a 100-fold increase in intracellular cAMP/DcAMP accompanied by a 40 to 80 fold decrease in total PKA activity. ThefadAG42R allele in TJYP1-22 decreased AF synthesis and conidiation, increased basal PKA activity 10 fold, and decreased total PKA activity 2 fold. In TJYP1-22, intracellular cAMP increased 2 fold without cAMP or DcAMP treatment; treatment did not stimulate conidiation or AF synthesis. Based on these data, we conclude that: (1) FadA/PKA regulate toxin synthesis and conidiation via similar mechanisms in Aspergillus spp.; and (2) intracellular cAMP levels, at least in part, mediate a PKA-dependent regulatory influence on conidiation and AF synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号