共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian XC Lonergan P Jeong BS Evans AC Yang X 《Molecular reproduction and development》2002,62(1):132-138
We have previously shown that bovine oocytes parthenogenetically activated after 40 hours (hr) of in vitro maturation proceed through the cell cycle faster than those after 20 hr of maturation. In the present study, we used this model of different speed of nuclear progression to investigate the correlation of two hallmarks of nuclear events, exit of metaphase arrest and pronuclear formation, with dynamics of MPF and MAPK. Bovine oocytes were matured in vitro for 20 hr (young) or 40 hr (aged) and activated in 7% ethanol followed by incubation in cycloheximide for 0, 0.5, 1, 3, 5, or 7 hr. Activity of MPF and MAPK was lower in aged than young oocytes. The responses to oocyte activation by both the two kinases and nuclear progression were faster in aged than in young oocytes. The activity of MPF declined to undetectable levels (P < 0.05) as early as 0.5 hr after activation in aged oocytes, while this did not happen in young oocytes until 3 hr after activation. The inactivation of MAPK occurred approximately 2 hr earlier in aged oocytes (5 hr post-activation) than in young oocytes (7 hr post-activation). Furthermore, the decline in MPF activity preceded that of MAPK in both young and aged oocytes by about 2 hr. The decrease in activity of MPF and MAPK corresponded with the exit from meiosis and pronuclei formation regardless of the speed of nuclear progression. Despite dramatic changes in activity of MPF and MAPK, the levels of Cdc2 and Erk2 proteins were unchanged (P > 0.05) during the first 7 hr of activation. These observations suggest that inactivation of MPF and MAPK are pre-requisite for the release from metaphase arrest and formation of pronuclei in bovine oocytes. 相似文献
2.
为阐明细胞分裂周期(Cdc)25B调控小鼠受精卵发育的机制,利用Western印迹检测小鼠受精卵各时期Cdc25B的表达及Cdc2-Tyr15的磷酸化状态。利用间接免疫荧光技术观察Cdc25B在小鼠受精卵的定位。构建pEGFP-Cdc25B融合表达载体并显微注射到受精卵中,观察Cdc25B在受精卵M期的定位变化。结果表明Cdc25B在G1和S期被磷酸化,在G2和M期去磷酸化。Cdc2-Tyr15在G1和S期处于磷酸化状态,G2期只检测到Cdc2-Tyr15轻微的磷酸化信号,M期未检测到任何Cdc2-Tyr15的磷酸化信号。Cdc25B在G1期定位于细胞质和细胞核中,S和G2期定位于细胞质的皮质部分,M期由细胞质转向核区。证明Cdc25B核输出后激活有丝分裂促进因子,从而启动小鼠受精卵的有丝分裂。 相似文献
3.
Jason Zwolak Nassiba Adjerid Elife Z. Bagci John J. Tyson Jill C. Sible 《Journal of theoretical biology》2009,260(1):110-120
A critical goal in cell biology is to develop a systems-level perspective of eukaryotic cell cycle controls. Among these controls, a complex signaling network (called ‘checkpoints’) arrests progression through the cell cycle when there is a threat to genomic integrity such as unreplicated or damaged DNA. Understanding the regulatory principles of cell cycle checkpoints is important because loss of checkpoint regulation may be a requisite step on the roadway to cancer. Mathematical modeling has proved to be a useful guide to cell cycle regulation by revealing the importance of bistability, hysteresis and time lags in governing cell cycle transitions and checkpoint mechanisms. In this report, we propose a mathematical model of the frog egg cell cycle including effects of unreplicated DNA on progression into mitosis. By a stepwise approach utilizing parameter estimation tools, we build a model that is grounded in fundamental behaviors of the cell cycle engine (hysteresis and time lags), includes new elements in the signaling network (Myt1 and Chk1 kinases), and fits a large and diverse body of data from the experimental literature. The model provides a validated framework upon which to build additional aspects of the cell cycle checkpoint signaling network, including those control signals in the mammalian cell cycle that are commonly mutated in cancer. 相似文献
4.
Nadia Hégarat Scott Rata Helfrid Hochegger 《BioEssays : news and reviews in molecular, cellular and developmental biology》2016,38(7):627-643
Mitotic entry and exit are switch‐like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions. 相似文献
5.
大多数物种的卵母细胞在减数分裂前都要经历长时间停滞,其中cAMP对卵母细胞减数分裂停滞具有重要作用,本研究关注c AMP对卵母细胞减数分裂的影响及其机制。本研究通过将卵母细胞与cAMP预孵育,再用胰岛素刺激研究胰岛素诱导的卵母细胞成熟的影响,接着本研究通过显微注射和Zeiss 100TV显微镜分析cAMP对PKA在卵母细胞中定位的影响,并且本研究用Western blotting的方法研究cAMP/PKA对mos蛋白的表达和MAPK蛋白磷酸化的影响。结果显示,本研究通过亲和层析得到了高纯度的PKA蛋白,且cAMP/PKA能够抑制卵母细胞的成熟,而PKA的热稳定抑制剂PKI能够解除PKA对卵母细胞减数分裂的抑制,cAMP/PKA也能够影响mos的积累以及MAPK的磷酸化。cAMP能够影响PKA在卵母细胞中的定位,cAMP/PKA能够通过影响mos积累抑制卵母细胞的减数分裂,这可能与cAMP能够抑制MAPK磷酸化有关。 相似文献
6.
The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor for Ras proteins whose catalytic domain is highly homologous to Ras-guanine nucleotide exchange factors from higher eukaryotes. In this study, glucose-induced Ras activation and cAMP response were investigated in mutants lacking the N-terminal domain of Cdc25 or where the entire CDC25 coding sequence was substituted by an expression cassette for a mammalian guanine nucleotide exchange factor catalytic domain. Our results suggest that an unregulated, low Ras guanine nucleotide exchange factor activity allows a normal glucose-induced cAMP signal that appears to be mediated mainly by the Gpr1/Gpa2 system, but it was not enough to sustain the glucose-induced increase of Ras2-GTP normally observed in a wild-type strain. 相似文献
7.
Dimorphism in fungal plant pathogens 总被引:1,自引:0,他引:1
Fungi are mostly sessile organisms, and thus have evolved ways to cope with environmental changes. Many fungi produce 'dormant' structures, which allow them to survive periods of unfavorable conditions. Another ingenious active approach to a changing environment has been adopted by the 'dimorphic fungi', which simply shift their thallic organization as a way to adapt and thrive in the new conditions. Dimorphism is extensively exploited by both plant and animal pathogenic fungi, where the encounter with the host prompts a shift in the mode of growth. In this review, we focus on the phenomenon of dimorphism among plant pathogenic fungi through discussion of several relatively well-studied exemplar species. 相似文献
8.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1. 相似文献
9.
The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. 总被引:8,自引:0,他引:8
The checkpoint protein Chfr delays entry into mitosis, in the presence of mitotic stress (Scolnick, D.M., and T.D. Halazonetis. 2000. Nature. 406:430-435). We show here that Chfr is a ubiquitin ligase, both in vitro and in vivo. When transfected into HEK293T cells, Myc-Chfr promotes the formation of high molecular weight ubiquitin conjugates. The ring finger domain in Chfr is required for the ligase activity; this domain auto-ubiquitinates, and mutations of conserved residues in this domain abolish the ligase activity. Using Xenopus cell-free extracts, we demonstrated that Chfr delays the entry into mitosis by negatively regulating the activation of the Cdc2 kinase at the G2-M transition. Specifically, the Chfr pathway prolongs the phosphorylated state of tyrosine 15 in Cdc2. The Chfr-mediated cell cycle delay requires ubiquitin-dependent protein degradation, because inactivating mutations in Chfr, interference with poly-ubiquitination, and inhibition of proteasomes all abolish this delay in mitotic entry. The direct target of the Chfr pathway is Polo-like kinase 1 (Plk1). Ubiquitination of Plk1 by Chfr delays the activation of the Cdc25C phosphatase and the inactivation of the Wee1 kinase, leading to a delay in Cdc2 activation. Thus, the Chfr pathway represents a novel checkpoint pathway that regulates the entry into mitosis by ubiquitin-dependent proteolysis. 相似文献
10.
11.
12.
黄牛、牦牛和犏牛睾丸组织中Cdc2、Cdc25A基因mRNA表达水平 总被引:4,自引:0,他引:4
黄牛和牦牛远缘杂交后代犏牛雄性不育是牦牛杂交改良中的一大难题。Cdc2和Cdc25A是减数分裂的两个关键基因, 其表达水平的下降将使精子发生不能正常进行, 导致雄性不育。为了探讨Cdc2、Cdc25A基因mRNA表达水平与犏牛雄性不育的关系, 文章采用荧光定量PCR技术对Cdc2和Cdc25A基因的组织表达特征以及在黄牛、牦牛和犏牛睾丸组织中的表达水平进行了分析。结果表明: Cdc2和Cdc25A基因在牦牛各种组织中广泛表达, 说明Cdc2和Cdc25A基因在各种组织细胞分裂和细胞周期运行中均发挥作用; 黄牛和牦牛睾丸组织中Cdc2、Cdc25A基因表达水平均显著高于犏牛(P<0.05), 说明睾丸组织中Cdc2和Cdc25A基因的低表达可能与犏牛雄性不育相关。 相似文献
13.
为探讨小鼠卵母细胞中Cdc25B(cell division cycle 25 homolog B)核输出序列在卵母细胞G2/M转换过程中的调控机制,应用显微注射方法将Cdc25B的野生型、N末端缺失1~51位氨基酸片段(Cdc25B-Δ51)、1~65位氨基酸片段(Cdc25B-Δ65)突变体的mRNA和pEGFP-Cdc25B-WT、pEGFP-Cdc25B-Δ51、pEGFP-Cdc25B-Δ65的融合质粒显微注射到含有完整生发泡的小鼠卵母细胞中,观察不同注射组小鼠卵母细胞发生生发泡破裂的情况及蛋白质亚细胞定位。结果显示Cdc25B-Δ51及Cdc25B-Δ65都丧失了诱导小鼠卵母细胞减数分裂的能力;同时亚细胞定位研究表明在G2期野生型Cdc25B主要分布在细胞浆中,Cdc25B-Δ51在核浆均有分布,Cdc25B-Δ65则主要分布于细胞核中。研究结果表明Cdc25B在52~65位氨基酸之间存在核输出序列(nuclear export sequence,NES),NES参与的核转运机制作为一种重要的调控机制控制着细胞的生理进程;N末端的氨基酸对减数分裂的重启动起促进作用。 相似文献
14.
Proliferation of endothelial cells is regulated by angiogenic and antiangiogenic factors whose actions are mediated by complex interactions of multiple signaling pathways. Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) stimulate cell proliferation and activate the mitogen-activated protein kinase (MAPK) cascade in bovine brain capillary endothelial (BBE) cells. We have extended these findings to show that both mitogens activate MAPK via stimulation of Raf-1. Activation of Raf/MAPK is inhibited by increasing intracellular cAMP levels pharmacologically or via stimulation of endogenously expressed β-adrenergic receptors. Both VEGF- and bFGF-induced Raf-1 activity are blocked in the presence of forskolin or 8-bromo-cAMP by 80%. The actions of increased cAMP appear to be mediated by cAMP-dependent protein kinase (PKA), since treatment with H-89, a the specific inhibitor of PKA, reversed the inhibitory effect of elevated cAMP levels on mitogen-induced cell proliferation and Raf/MAPK activation. Moreover, elevations in cAMP/PKA activity inhibit mitogen-induced cell proliferation. These findings demonstrate, in cultured endothelial cells, that the cAMP/PKA signaling pathway is potentially an important physiological inhibitor of mitogen activation of the MAPK cascade and cell proliferation. J. Cell. Biochem. 67:353–366, 1997. © 1997 Wiley-Liss, Inc. 相似文献
15.
16.
I型蛋白激酶的调节亚基(RI)具有两个cAMP结合位点,对cAMP具有很高亲和力和特异性,我们从人神经细胞中克隆人RI亚基cDNA片段(编码氨基酸残基93-381)并将其亚克隆至pET30a原核表达载体,实验表明该表达质粒在大肠杆菌BL21中,在IPTG诱导下,表达产生大量带聚组氨酸标记的重组RI亚基。这些蛋白质以可溶性蛋白形式存在,经组氨酸结合金属螯合树脂亲和柱层析纯化后,每0.1升培养菌可制备 相似文献
17.
18.
Jin Ihara Noriyuki Yoshida Toyomi Tanaka Koichi Mita Masakane Yamashita 《Molecular reproduction and development》1998,50(4):499-509
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation. Mol. Reprod. Dev. 50:499–509, 1998. © 1998 Wiley-Liss, Inc. 相似文献
19.
Jianling Xie Godwin A. Ponuwei Claire E. Moore Gary B. Willars Andrew R. Tee Terence P. Herbert 《Cellular signalling》2011,23(12):1927-1935
cAMP and mTOR signalling pathways control a number of critical cellular processes including metabolism, protein synthesis, proliferation and cell survival and therefore understanding the signalling events which integrate these two signalling pathways is of particular interest. In this study, we show that the pharmacological elevation of [cAMP]i in mouse embryonic fibroblasts (MEFs) and human embryonic kidney 293 (HEK293) cells inhibits mTORC1 activation via a PKA-dependent mechanism. Although the inhibitory effect of cAMP on mTOR could be mediated by impinging on signalling cascades (i.e. PKB, MAPK and AMPK) that inhibit TSC1/2, an upstream negative regulator of mTORC1, we show that cAMP inhibits mTORC1 in TSC2 knockout (TSC2−/−) MEFs. We also show that cAMP inhibits insulin and amino acid-stimulated mTORC1 activation independently of Rheb, Rag GTPases, TSC2, PKB, MAPK and AMPK, indicating that cAMP may act independently of known regulatory inputs into mTOR. Moreover, we show that the prolonged elevation in [cAMP]i can also inhibit mTORC2. We provide evidence that this cAMP-dependent inhibition of mTORC1/2 is caused by the dissociation of mTORC1 and 2 and a reduction in mTOR catalytic activity, as determined by its auto-phosphorylation on Ser2481. Taken together, these results provide an important insight into how cAMP signals to mTOR and down-regulates its activity, which may lead to the identification of novel drug targets to inhibit mTOR that could be used for the treatment and prevention of human diseases such as cancer. 相似文献
20.
Stebbins-Boaz B Fortner K Frazier J Piluso S Pullen S Rasar M Reid W Sinclair K Winger E 《Molecular reproduction and development》2004,67(2):233-242
Oocyte maturation is dependent on a complex program of morphological, ultrastructural, and biochemical signaling events, and if disrupted could lead to decreased fertility and population decline. The in vitro sensitivity of amphibian oocytes and oocyte maturation to plant growth factor and widely used hormonal herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was examined in this study to determine its potential impact on early development and possible contribution to the global amphibian decline. Progesterone, which acts through a membrane receptor, triggers meiotic maturation in full grown (stage VI) Xenopus oocytes, characterized by cytoskeletal reorganization, nuclear dissolution, chromosome condensation, and spindle formation. Biochemically, the Mos/MAPK/MPF signaling pathway is activated, in part dependent on translational activation of specific maternal mRNAs such as c-Mos. Light microscopy revealed unusual asymmetric morphotypes in oocytes exposed to 2,4-D alone characterized by a white spot and bulge, termed coning, in the animal pole where the germinal vesicle (nucleus) persisted intact. Treatment of oocytes with cytochalasin B, a microfilament inhibitor, blocked these morphotypes but nocodazole, a microtubule depolymerizing agent, did not. Confocal microscopy showed that 2,4-D, itself, caused substantial depolymerization of perinuclear microtubules. Importantly, 2,4-D blocked progesterone-induced maturation as measured by the lack of nuclear breakdown, confirmed by the lack of Mos expression, MPF activation, and cytoplasmic polyadenylation of cyclin B1 mRNA. However, Western blot analysis and U0126 inhibitor studies showed that 2,4-D, either alone or in the presence of progesterone, induced MAPK phosphorylation through MAPKK. These results show that 2,4-D disrupts oocyte cytoskeletal organization and blocks maturation while stimulating an independent MAPK signaling pathway. 相似文献