首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study describes the use of molecular methods in studying infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Canada, USA and Chile. The nucleotide sequences of the haemagglutinin gene (HA) from 70 ISAV isolates have been analysed for phylogenetic relationship and the average mutation rate of nucleotide substitutions calculated. The isolates constitute 2 major groups, 1 European and 1 North American group. The isolate from Chile is closely related to the North American isolates. The European isolates can be further divided into 3 separate groups reflecting geographical distribution, time of collection, and transmission connected with farming activity. Based on existing information about infectious salmon anaemia (ISA) and new information emerging from the present study, it is hypothesised that: (1) ISAV is maintained in wild populations of trout and salmon in Europe; (2) it is transmitted between wild hosts mainly during their freshwater spawning phase in rivers; (3) wild salmonids, mainly trout, possibly carry benign wild-type ISAV isolates; (4) a change (mutation) in virulence probably results from deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates; (5) ISA emerges in farmed Atlantic salmon when mutated isolates are transmitted from wild salmonids or, following mutation of benign isolates, in farmed salmon after transmission from wild salmonids; (6) farming activity is an important factor in transmission of ISAV between farming sites in addition to transmission of ISAV from wild salmonids to farmed salmon; (7) transmission of ISAV from farmed to wild salmonids probably occurs less frequently than transmission from wild to farmed fish due to lower frequency of susceptible wild individuals; (8) the frequency of new outbreaks of ISA in farmed salmon probably reflects natural variation in the prevalence of ISAV in wild populations of salmonids.  相似文献   

2.
Studies of infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Ireland, Canada, the USA and Chile, suggest that natural reservoirs for this virus can be found on both sides of the North Atlantic. Based on existing information about ISAV it is believed to be maintained in wild populations of trout and salmon in Europe. It has further been suggested that ISAV is transmitted between wild hosts, mainly during their freshwater spawning phase in rivers, and that wild salmonids, mainly trout, are possible carriers of benign wild-type variants of ISAV. Change in virulence is probably a result of deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates after transmission to farmed salmon. Hence, it has been suggested that the frequency of new outbreaks of ISA in farmed salmon could partly reflect natural variation in the prevalence of ISAV in wild populations of salmonids. The aims of the present study were to screen for ISAV in wild salmonids during spawning in rivers and to determine the pathogenicity of resultant isolates from wild fish. Tissues from wild salmonids were screened by RT-PCR and real-time PCR. The prevalence of ISAV in wild trout Salmo trutta varied from 62 to 100% between tested rivers in 2001. The prevalence dropped in 2002, ranging from 13 to 36% in the same rivers and to only 6% in 2003. All ISAV were nonpathogenic when injected into disease-free Atlantic salmon, but were capable of propagation, as indicated by subsequent viral recovery. However, non-pathogenic ISAV has also been found in farmed salmon, where a prevalence as high as 60% has been registered, but with no mortalities occurring. Based on the results of the present and other studies, it must be concluded that vital information about the importance of wild and man-made reservoirs for the emergence of ISA in salmon farming is still lacking. This information can only be gained by further screening of possible reservoirs, combined with the development of a molecular tool for typing virulence and the geographical origin of the virus isolates.  相似文献   

3.

Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.

  相似文献   

4.
Marine netpen farming of salmonid fishes is a rapidly growing industry in several countries. With this relatively recent industry, new or unusual infections by parasitic pathogens have been observed. This is due to different hosts being reared in new geographic areas, or by indigenous species being reared in a different environmental condition, i.e. the marine netpen. Examples of the former include Kudoa thyrsites (Myxozoa) and Hemobaphes disphaerocephalus (Copepoda) infections in Atlantic salmon (Salmo salar) reared in the Pacific Northwest, Ceratothoa gaudichaudii (Isopoda) infections in Atlantic salmon reared in Chile, Neoparamoeba (=Paramoeba) sp. (Sacromastigophora) from salmonids reared in Tasmania, and Stephanostomum tenue (Digenea) infections in rainbow trout (Oncorhynchus mykiss) reared in Atlantic Canada. Chinook salmon (Oncorhynchus tshawytscha) reared in its native region, the Pacific Northwest, provides some examples of unusual or more severe infections than those normally seen in wild or freshwater reared chinook salmon. These include infections by Loma salmonae (Microsporidia), Gilguina squali (Cestoda) and the rosette agent, an undescribed fungus-like organism related to choanoflagellates. As the industry continues to expand, it is certain that more novel host-parasite relationships will be observed, providing challenges for fish farmers and parasitologists.  相似文献   

5.
Spironucleus salmonicida is a diplomonad flagellate known to cause systemic infections in farmed salmonids. In northern Norway, outbreaks of spironucleosis in farmed Atlantic salmon Salmo salar have been a recurring problem. Common to all these outbreaks was the origin of smolts: all came from the same farm. In the present study, wild Arctic char Salvelinus alpinus and brown trout Salmo trutta were sampled from the lakes used as a water source for the smolt supplier. In addition, smolt and three-spined sticklebacks Gasterosteus aculeatus were sampled from the smolt farm. Bile and intestinal contents from the sampled fish were examined by light microscopy and PCR. Spironucleus salmonicida was identified in both wild Arctic char and brown trout from the lakes used as water sources by the smolt farm, suggesting that the farmed fish were exposed to this pathogen before transfer to the sea. Spironucleus barkhanus and Spironucleus salmonis were also identified in the sampled fish. The present study also demonstrated that infections with multiple Spironucleus species are present in wild salmonids. No indications of disease related to diplomonad infections were observed in the wild fish, suggesting that wild salmonids are reservoir hosts of Spironucleus salmonicida.  相似文献   

6.
The relative competitive ability of juvenile farm and wild salmonids was investigated to provide insight into the potential effects of introduction of cultured salmon on wild Pacific salmonid ( Oncorhynchus ) species. Aquarium experiments involving equal contests ( i.e. size matched, simultaneously introduced individuals) indicated that two wild coho salmon Oncorhynchus kisutch populations were competitively equal to a farm coho salmon population. In equal contests between farm Atlantic salmon Salmo salar (Mowi strain) and these wild coho salmon populations or coastal cutthroat trout Oncorhynchus clarki clarki , Atlantic salmon were subordinate in all cases. When Atlantic salmon were given a residence advantage, however, they were competitively equal to both wild coho salmon populations, but remained subordinate to coastal cutthroat trout. When Atlantic salmon were given a 10–30% length advantage, they were competitively equal to one wild coho salmon population but remained subordinate to the other. In equal contests in semi-natural stream channels, both wild coho and farm Atlantic salmon grew significantly more in the presence of the other species than when alone. It appears that coho salmon obtain additional food ration by out competing Atlantic salmon, whereas Atlantic salmon were stimulated to feed more in the presence of coho salmon competitors. These results suggest that wild coho salmon and cutthroat trout should out compete farm Atlantic salmon of a similar size in nature. As the relative competitive ability of Atlantic salmon improves when they have a size and residence advantage, should feral populations become established, they may exist on a more equal competitive footing owing to the long freshwater residence of Atlantic salmon.  相似文献   

7.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

8.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

9.
In Chilean Patagonia relatively pristine aquatic environments are being modified by the introduction of exotic salmonids, initially through their deliberate release for sport fishing since the early twentieth century, and more recently via the accidental escape from fish farms. There is therefore a need to reliably distinguish between naturally reproducing and fugitive salmonids associated with the Chilean salmonid farming industry, the second largest in the world. We tested the ability of stable isotope analysis (SIA) and analysis of scale growth profiles to discriminate between farmed and free-living salmonids sampled around the Island of Chiloé. Juvenile Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) from aquaculture facilities were significantly more enriched in δ15N and lipid-corrected δ13C than river-caught individuals. Scale growth slopes during the first year in freshwater were significantly higher in farmed than in wild-caught rainbow trout, indicating faster somatic growth under hatchery conditions. Stable isotopes analysis classified 94% of juvenile Atlantic salmon and rainbow trout to their correct farm or free-living groups. Our results, therefore, can help to elucidate the origin and spread of exotic invasive salmonids in Chile, and address one of the biggest threats to native freshwater fishes in Patagonia and other temperate zones of the Southern Hemisphere.  相似文献   

10.
In Scotland and elsewhere, there are concerns that escaped farmed Atlantic salmon (Salmo salar L.) may impact on wild salmon stocks. Potential detrimental effects could arise through disease spread, competition, or inter-breeding. We investigated whether there is evidence of a direct effect of recorded salmon escape events on wild stocks in Scotland using anglers' counts of caught salmon (classified as wild or farmed) and sea trout (Salmo trutta L.). This tests specifically whether documented escape events can be associated with reduced or elevated escapes detected in the catch over a five-year time window, after accounting for overall variation between areas and years. Alternate model frameworks were somewhat inconsistent, however no robust association was found between documented escape events and higher proportion of farm-origin salmon in anglers' catch, nor with overall catch size. A weak positive correlation was found between local escapes and subsequent sea trout catch. This is in the opposite direction to what would be expected if salmon escapes negatively affected wild fish numbers. Our approach specifically investigated documented escape events, contrasting with earlier studies examining potentially wider effects of salmon farming on wild catch size. This approach is more conservative, but alleviates some potential sources of confounding, which are always of concern in observational studies. Successful analysis of anglers' reports of escaped farmed salmon requires high data quality, particularly since reports of farmed salmon are a relatively rare event in the Scottish data. Therefore, as part of our analysis, we reviewed studies of potential sensitivity and specificity of determination of farmed origin. Specificity estimates are generally high in the literature, making an analysis of the form we have performed feasible.  相似文献   

11.
The normal shape of the salmonid ventricle is a triangular pyramid with the apex pointing caudoventrally. A strong positive correlation has been established between this shape and optimum cardiac output and function. Domesticated salmonids appear to have developed a more rounded ventricle with misaligned bulbus arteriosus. Several reports from fish health veterinarians indicate that fish with abnormal heart morphology have a high mortality rate during stress-inducing situations like grading, transportation and bath treatments. The present paper compares and describes the ventricle morphology of wild vs. farmed Atlantic salmon, and wild steelhead (anadromous rainbow trout) vs. farmed rainbow trout. Several parameters were measured to provide numerical measurement of the differences in shape, i.e. height:width ratio and the angle between the longitudinal ventricular axis and the axis of the bulbus arteriosus. We conclude that the hearts of farmed fish are rounder than those in corresponding wild fish, and that the angle between the ventricular axis and the axis of the bulbus arteriosus is more acute in wild fish than in their farmed counterparts. Further studies are necessary to reveal the prevalence, functional significance and possible causes of these abnormal hearts.  相似文献   

12.
Farmed non-native Atlantic salmon (Salmo salar) is the largest agriculture export product of British Columbia, Canada. Chronic low-volume escapes of salmon from farms into Pacific waters (“leakage”) are typically undetectable (Britton et al. 2011). Analysis of escape-reporting from farmers indicates that reports greatly underestimate the true number of Atlantic salmon inadvertently released from open-net pen rearing sites (Morton and Volpe 2002). To quantify the spatial extent of escaped Atlantic salmon in Canadian Pacific rivers, we systematically snorkel-surveyed 41 known Pacific salmon (Oncorhynchus spp.)-supporting rivers and creeks on Vancouver Island over a span of 3 years. We estimated and accounted for imperfect detections using multi-season occupancy models. We detected Atlantic salmon in 36.6 % of surveyed rivers. After accounting for imperfect detection, occupancy models estimated that over half of surveyed streams across the study area contained Atlantic salmon, and that 97 % of streams with high native salmon diversity were occupied by Atlantic salmon. Even in intensive snorkel surveys, Atlantic salmon are detected in occupied streams only 2/3 the time, suggesting abundance and distribution of non-native salmon is greater than indicated by the only existing data. Further, Atlantic salmon are more likely to occupy streams with high native Pacific salmon diversity—and more likely to maintain occupancy across years—potentially increasing competitive pressure on native salmonids. Understanding local biotic and abiotic predictors of Atlantic salmon occupancy, stream colonization, and local extinction requires more data; the same is true for the effects of escaped Atlantic salmon on local salmon diversity and sustainability. These data for the first time show that Atlantic salmon occupy Pacific coastal rivers for multiple years. The impact of Atlantic salmon occupancy in British Columbia rivers must be factored into policy decisions regarding the future of salmon farming in the provincial waters.  相似文献   

13.
Escaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild‐type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self‐maintenance) during domestication. Fitness‐related advantages of phenotypic traits associated with both high SMR and farmed salmon (e.g., social dominance) depend on environmental conditions, such as food availability. We hypothesize that farmed offspring have an advantage at high food availability due to, for example, dominance behavior but suffer increased risks of starvation when food is scarce because this behavior is energy‐demanding. To test these hypotheses, we first compare embryo SMR of pure farmed, farmed‐wild hybrids and pure wild offspring. Next, we test early‐life performance (in terms of survival and growth) of hybrids relative to that of their wild half‐siblings, as well as their competitive abilities, in semi‐natural conditions of high and low food availability. Finally, we test how SMR affects early‐life performance at high and low food availability. We find inconclusive support for the hypothesis that domestication has induced increased SMR. Further, wild and hybrid juveniles had similar survival and growth in the semi‐natural streams. Yet, the presence of hybrids led to decreased survival of their wild half‐siblings. Contrary to our hypothesis about context‐dependency, these effects were not modified by food availability. However, wild juveniles with high SMR had decreased survival when food was scarce, but there was no such effect at high food availability. This study provides further proof that farmed salmon introgression may compromise the viability of wild salmon populations. We cannot, however, conclude that this is connected to alterations in the metabolic phenotype of farmed salmon.  相似文献   

14.
Sea trout are the sea-going migratory form of the freshwater brown trout (Salmo trutta L.) and since 1989 there have been marked declines in their stocks on the west coasts both of Scotland and Ireland. Various factors have been attributed as possible causal agents in these stock declines, including fresh water acidification, overfishing, climatic fluctuations, habitat degradation and sea lice parasitic burdens. The putative impact of infestations of sea trout by the ectoparasitic copepod sea louse, Lepeophtheirus salmonis (Krøyer), has featured prominently in the controversy, especially with regard to the role of inshore commercial salmon farms as a possible source of infestation of wild salmonids by sea lice. This study focused on the population genetics of L. salmonis around the coasts of Scotland: We sampled fish from wild and cultured stocks and included salmon (Salmo salar L.), rainbow trout (Oncorhynchus mykiss Walbaum) and sea trout as host species. Analyses of allozyme variation of sea lice were confined to data for two polymorphic loci (Fum, Got-2) and conformed to our initial expectation — that the inclusion of a planktonic larval phase in the life cycle of the copepod, in addition to the high mobility of the host fish, would enhance gene flow and preclude genetic differentiation of L. salmonis populations as a result of random drift alone. DNA polymorphism was quantified by means of PCR and RAPD analysis. Six primers were screened for 16 samples (from wild and farmed salmon, wild sea trout and farmed rainbow trout) — including the east, north and west coasts of Scotland — and the data analyzed by AMOVA (Analysis of Molecular Variance). In contrast to the allozyme results, the RAPD analysis showed striking patterns of genetic differentiation around the coasts of Scotland. The overall pattern was one of genetic homogeneity of L. salmonis populations sampled from wild salmon and sea trout. All of the L. salmonis samples taken from farmed salmon and rainbow trout did, however, show highly significant levels of genetic differentiation, both between wild and farmed salmonids and among the various farms themselves. Evidence of high levels of small-scale spatial or temporal heterogeneity of RAPD marker band frequencies was shown for the one farm from which repeat samples (July and November, 1995) were analysed. Samples of sea lice taken from west coast wild sea trout subjected to RAPD analysis also revealed the occurrence of putative “farm markers” in some individual parasites, indicating that they had possibly originated from salmon farms.  相似文献   

15.
Spironucleus barkhanus isolated from the blood of Arctic charr Salvelinus alpinus from a marine fish farm were genetically compared with S. barkhanus isolated from the gall bladder of wild Arctic charr. The wild Arctic charr were caught in the lake used as the water source for the hatchery from which the farmed fish originated. Sequencing of the small subunit ribosomal RNA gene (SSU rDNA) from these 2 populations showed that the isolates obtained from farmed and wild Arctic charr were only 92.7 % similar. Based on the sequence differences between these isolates, it is concluded that the parasites isolated from the farmed fish have not been transmitted from wild Arctic charr in the hatchery's fresh water source. It is therefore most likely that the farmed fish were infected by S. barkhanus after they were transferred to seawater. S. barkhanus isolated from diseased farmed Arctic charr were 99.7% similar to the isolates obtained from diseased farmed Chinook (Canada) and Atlantic salmon (Norway). The high degree of sequence similarity between S. barkhanus from farmed Arctic charr, Chinook and Atlantic salmon indicates that systemic spironucleosis may be caused by specific strains/variants of this parasite. The genetic differences between the isolates of farmed and wild fish are of such magnitude that their conspecificity should be questioned.  相似文献   

16.
17.
Relatively little is known about fish species interactions in offshore areas of the world’s oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters.  相似文献   

18.
The microsporidian Loma salmonae (Putz, Hoffman & Dunbar, 1965) Morrison & Sprague, 1981 has caused significant gill disease in Pacific salmon Oncorhynchus spp. Host specificity of the parasite was examined experimentally by per os challenge of selected salmonids and non-salmonids with infective chinook salmon O. tshawytscha gill material. Pink Oncorhynchus gorbuscha and chum salmon O. keta, brown Salmo trutta and brook trout Salvelinus fontinalis, and chinook salmon (controls) were positive, whereas Atlantic salmon Salmo salar and Arctic char Salvelinus alpinus were negative. In addition, no non-salmonids were susceptible to experimental exposure. Wild Pacific salmon species in British Columbia, Canada, were examined for L. salmonae during their freshwater life history stages (smolts, prespawning, spawning). All stages were infected, although infections in smolts were only detectable using a L. salmonae-specific PCR test. Many previous Loma spp. described from Oncorhychus spp. are likely L. salmonae based on host, parasite morphology, and site of infection.  相似文献   

19.
The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon.  相似文献   

20.
The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1–15 degree-days (0–3 days, as water temperatures were c. 5–6°C), these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号