首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In vivo levels of enzymatic activity may be increased through either structural or regulatory changes. Here we use Drosophila melanogaster alcohol dehydrogenase (ADH) in an experimental test for selective differences between these two mechanisms. The well-known ADH-Slow (S)/Fast (F) amino acid replacement leads to a twofold increase in activity by increasing the catalytic efficiency of the enzyme. Disruption of a highly conserved, negative regulatory element in the Adh 3' UTR also leads to a twofold increase in activity, although this is achieved by increasing in vivo Adh mRNA and protein concentrations. These two changes appear to be under different types of selection, with positive selection favoring the amino acid replacement and purifying selection maintaining the 3' UTR sequence. Using transgenic experiments we show that deletion of the conserved 3' UTR element increases adult and larval Adh expression in both the ADH-F and ADH-S genetic backgrounds. However, the 3' UTR deletion also leads to a significant increase in developmental time in both backgrounds. ADH allozyme type has no detectable effect on development. These results demonstrate a negative fitness effect associated with Adh overexpression. This provides a mechanism whereby natural selection can discriminate between alternative pathways of increasing enzymatic activity.  相似文献   

4.
5.
Representatives of five allozymic classes of Drosophila alcohol dehydrogenase have been compared with respect to their activity levels on two alcohol substrates, quantities of ADH protein, and stability in crude extracts. Within each allozymic class, strains from widely diverse geographic locations differ in their enzyme activity levels but are identical for a measure known as "activity ratio," which is obtained by dividing the average activity reading on isopropanol by that obtained with ethanol. They are also similar in the rate at which ADH activity declines in crude extracts held at 25 degrees C. For several of the fast-resistant and fast-moderate strains, differences in ADH activity are associated with differences in the amount of enzyme present. The catalytic efficiencies of the fast-resistant forms are considerably lower than those of the fast-moderate allozymes. The origin and persistence of the rare but ubiquitous fast-resistant allozyme is discussed.  相似文献   

6.
7.
Matzkin LM 《Molecular ecology》2005,14(7):2223-2231
Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.  相似文献   

8.
C. C. Laurie  L. F. Stam 《Genetics》1994,138(2):379-385
Several lines of evidence indicate that natural selection controls the frequencies of an allozyme polymorphism at the alcohol dehydrogenase (Adh) locus in Drosophila melanogaster. However, because of associations among sequence polymorphisms in the Adh region, it is not clear whether selection acts directly (or solely) on the allozymic site. This problem has been approached by using in vitro mutagenesis to distinguish among the effects on Adh expression of individual polymorphisms. This study shows that a polymorphism within the first Adh intron ( &1) has a significant effect on the level of ADH protein. Like the allozyme, & shows a geographic cline in frequency, indicating that it may also be a target of natural selection. These results suggest that multisite selection models may be required to understand the evolutionary dynamics of individual loci.  相似文献   

9.
10.
D. J. Begun 《Genetics》1997,145(2):375-382
Drosophila alcohol dehydrogenase (Adh) is highly conserved in size, organization, and amino acid sequence. Adh-ψ was hypothesized to be a pseudogene derived from an Adh duplication in the repleta group of Drosophila; however, several results from molecular analyses of this gene conflict with currently held notions of molecular evolution. Perhaps the most difficult observations to reconcile with the pseudogene hypothesis are that the hypothetical replacement sites of Adh-ψ evolve only slightly more quickly than replacement sites of closely related, functional Adh genes, and that the replacement sites of the pseudogenes evolve considerably more slowly than neighboring silent sites. The data have been presented as a paradox that challenges our understanding of the mechanisms underlying DNA sequence divergence. Here I show that Adh-ψ is actually a new, functional gene recently descended from an Adh duplication. This descendant recruited ~60 new N-terminal amino acids, is considerably more basic than ADH, and is evolving at a faster rate than Adh. Furthermore, though the descendant is clearly functional, as inferred from molecular evolution and population genetic data, it retains no obvious ADH activity. This probably reflects functional divergence from its Adh ancestor.  相似文献   

11.
This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k greater than ADH-F greater than ADH-S greater than simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S greater than ADH-F greater than ADH-71k greater than simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.  相似文献   

12.
The ethanol tolerance of adult transgenic flies of Drosophila containing between zero and ten unpreferred synonymous mutations that reduced codon bias in the alcohol dehydrogenase (Adh) gene was assayed. As the amino acid sequences of the ADH protein were identical in the four genotypes assayed, differences in ethanol tolerance were due to differences in the abundance of ADH protein, presumably driven by the effects of codon bias on translational efficiency. The ethanol tolerance of genotypes decreased with the number of unpreferred synonymous mutations, and a positive correlation between ADH protein abundance and ethanol tolerance was observed. This work confirms that the fitness effects of unpreferred synonymous mutations that reduce codon bias in a highly expressed gene are experimentally measurable in Drosophila melanogaster.  相似文献   

13.
We compared nucleotide sequences of exon 4 and part of exon 5 of alleles F and S of the Adh1 locus controlling alcohol dehydrogenase in sugar beet. The Adh1-F and Adh1-S sequences of the examined fragment were shown to differ by two nucleotides. Adenine (A) and cytosine (C) of Adh1-F were substituted by respectively thymine (T) and adenine (A) in Adh1-S. Consequently, glutamine and asparagine from the F subunit of ADH1 are replaced by valine and lysine, respectively. Because of differences in the amino acid content, the F subunit is by two elementary charges more negatively charged electrically than the S subunit, which correlates with differences in their electrophoretic mobility. Comparison of the examined Adh1 fragment of sugar beet with its counterparts in other plants showed that the sites bearing substitutions in the former species are classed as variable.  相似文献   

14.
A more than 10-fold difference in the specificity and catalytic efficiency for 1-naphthyl esters was measured between two allozymes of esterase-4 from Drosophila mojavensis. This difference is mainly caused by a difference in the affinity for the 1-naphthyl esters. The amino acid compositions of the allozymes are not significantly different, which means that the difference in primary structure is small. Small differences in primary structure generally do not result in such a large increase in catalytic efficiency and such a large shift in substrate specificity as was found in the present study.   相似文献   

15.
A study was made of environmental and genetic factors affecting the quantity and disposition of the alcohol dehydrogenase (ADH) protein in Drosophila melanogaster. It was found that the amount of enzyme per fly is greatly influenced by the environmental conditions in which it develops. A critical factor is the concentration of yeast in the medium. A high concentration of yeast can double the quantity of ADH. The yeast appears to act through the provision of protein, and the protein to act through the provision of threonine, which is already known to induce ADH in fungi. Various genetic factors affect the quantity of enzyme. Males have more ADH than females. Files homozygous for the Fast allele have more ADH than those homozygous for the slow allele, and the difference is greater in females than in males. One particular line (ve), homozygous for Slow, has approximately half the normal quantity of enzyme, and the quantity segregates with the electrophoretic allele. Lines differ in the relative amounts of ADH in the gut (including Malpighian tubules) and the fat body. In general it seems that slow lines have relatively more enzyme in the fat body. In a cross between ve and a line homozygous to Fast, the difference in tissue distribution segregated with the electrophoretic allele. It is argued, but not demonstrated, that the differences in quantity and tissue distribution are due to nucleotide substitutions in noncoding regions close to, or within, the structural gene. It seems likely that the observed environmental and genetic differences in the quantity and disposition of ADH will influence the relative selective values of the electrophoretic genotypes.  相似文献   

16.
The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D. kuntzei Adh is regulated by a one-promoter system. Further upstream of the Adh structural gene, an adult enhancer region (AAE) was found that contains most of the regulatory sequences described for AAEs of other Drosophila species. Analysis of the ADH protein showed an amino acid change from valine to threonine in the active site at position 189 which is also found in D. funebris but is otherwise unique among DROSOPHILA: This difference alone may be responsible for the very low ADH activity found in this species and may cause a difference in substrate usage pattern. Codon bias in Adh and Adhr was comparable and found to be very low compared with other species. Phylogenetic analysis showed that D. kuntzei is closest related to D. funebris and D. immigrans. The time of divergence between D. kuntzei and D. funebris was estimated to be 14.2-20.2 Myr and that between D. kuntzei-D. funebris and D. immigrans to be 30.8-44.0 Myr. An analysis of the genetic variation in the Adh gene and upstream sequences of four European strains showed that this gene was highly variable. Overall nucleotide diversity (pi) was 0.0139, which is two times higher than that in D. melanogaster.  相似文献   

17.
Complex study of adaptation and allozyme belonging of alcoholdehydrogenase (ADH) in cn and vg mutants has been carried out in the initial pure lines, in their panmixia populations and in condition of substitution of the mutant genotype by saturating crossings. It was shown that the high level of adaptation of cn mutants and the low level of adaptation of vg mutants was combined with the presence of different ADH allozymes. During the saturating crossings the reliable coadaptation of the genes cn and Adh(S) as well as vg and Adh(F) was detected that confirmes the postulated earlier conception of gene adaptation complexes.  相似文献   

18.
The structural gene encoding a mutant Escherichia coli phosphoenolpyruvate carboxylase deficient in regulation by fructose 1,6-bisphosphate (Fru-P2) was isolated from total E. coli PpcI genomic DNA. This mutant gene is located on a 4.4-kilobase SalI DNA fragment which, when ligated to SalI-digested pBR322, resulted in the generation of the plasmid pFS16. Detailed restriction mapping of the wild-type and mutant genes for phosphoenolpyruvate carboxylase revealed the presence of a ClaI restriction site at position 563 of the mutant gene only. This ClaI site is located on a 289 PvuII/DdeI fragment which codes for amino acid residues 174-270 of the phosphoenolpyruvate carboxylase enzyme. When this portion of the mutant gene is present in chimeras of the wild-type and mutant genes, the phosphoenolpyruvate carboxylase produced cannot be activated by Fru-P2. The mutation resulting in the generation of the ClaI site in the mutant gene has also resulted in an amino acid substitution at residue 188; threonine in the wild-type enzyme has been replaced by isoleucine in the mutant enzyme. Comparison of the nucleotide sequence of this 289-base pair PvuII/DdeI region of the mutant gene with its homologous region in the wild-type gene verified that this mutation, which resulted in the generation of the ClaI site, is the only change that has occurred on this 289-base pair fragment of the mutant gene, and thus the amino acid replacement of threonine by isoleucine is the only change that could be linked to the inability of the mutant enzyme to be activated by Fru-P2.  相似文献   

19.
Indian geographical populations of Drosophila melanogaster exhibit significant correlation (r 0.95) of allelic frequencies at Est -6 and Adh loci with latitude as well as altitude. Est -6S and AdhF allozymes are well adapted to colder environments while Est -6F and AdhS are warm adapted. The data on allozymic clines match climatic conditions on the Indian subcontinent. On the basis of multiple regression analysis, one major conclusion is that coefficient of variation of temperature ( T CV) along latitude/altitude accounts for alterations in allelic frequency at the Adh locus while T max and T max explain changes at the Est -6 locus. Thus, climatic conditions lead to thermal selection of allozymes in Indian populations of D. melanogaster .  相似文献   

20.
Insertion of the maize transposable element Mu-1 into the first intron of the alcohol dehydrogenase locus (Adh1) of maize produced mutant Adh1-S3034 with 40% of the wild-type level of protein and mRNA. Continued instability at this locus resulted in secondary mutations with lower levels of protein expression. One of these, Adh1-S3034a, has no detectable ADH1 expression. This paper describes the precise nature of the changes in the Adh1 gene that gave rise to the S3034a allele. The Mu-1 element is still present in the mutant, but Adh1 sequences immediately adjacent to the element are deleted. The deletion starts precisely at the Mu-1 insertion site and extends 74 bp leftward removing part of the first intron, the intron:exon junction and 2 bp of the eleventh amino acid codon in the first exon of the gene. Tests for reversion within the somatic tissue of plants show that mutant S3034a, unlike its progenitor, is stably null for ADH1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号