首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein Mobility in the Cytoplasm of Escherichia coli   总被引:10,自引:0,他引:10       下载免费PDF全文
The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809–812, 1997). The apparent diffusion coefficient, Da, of GFP in E. coli DH5α was found to be 7.7 ± 2.5 μm2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with Da of 2.5 ± 0.6 μm2/s. In addition, GFP mobility can depend strongly on at least two factors: first, Da is reduced to 3.6 ± 0.7 μm2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces Da to 4.0 ± 2.0 μm2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of Da reported here. These measurements have implications for the understanding of intracellular biochemical networks.  相似文献   

2.
The thermostability of the penicillin-binding proteins (PBPs) of 31 temperature-sensitive cell division mutants of Escherichia coli has been examined. Two independent cell division mutants have been found that have highly thermolabile PBP3. Binding of [(14)C]benzylpenicillin to PBP3 (measured in envelopes prepared from cells grown at the permissive temperature) was about 30% of the normal level at 30 degrees C, and the ability to bind [(14)C]benzylpenicillin was rapidly lost on incubation at 42 degrees C. The other PBPs were normal in both mutants. At 30 degrees C both mutants were slightly longer than their parents and on shifting to 42 degrees C they ceased dividing, but cell mass and deoxyribonucleic acid synthesis continued and long filaments were formed. At 42 degrees C division slowly recommenced, but at 44 degrees C this did not occur. The inhibition of division at 42 degrees C was suppressed by 0.35 M sucrose, and in one of the mutants it was partially suppressed by 10 mM MgCl(2). PBP3 was not stabilized in vitro at 42 degrees C by these concentrations of sucrose or MgCl(2). Revertants that grew as normal rods at 42 degrees C regained both the normal level and the normal thermostability of PBP3. The results provide extremely strong evidence that the inactivation of PBP3 at 42 degrees C in the mutants is the cause of the inhibition of cell division at this temperature and identify PBP3 as an essential component of the process of cell division in E. coli. It is the inactivation of this protein by penicillins and cephalosporins that results in the inhibition of division characteristic of low concentrations of many of these antibiotics.  相似文献   

3.
Autotransporters (ATs) are a family of bacterial proteins containing a C-terminal β-barrel-forming domain that facilitates the translocation of N-terminal passenger domain whose functions range from adhesion to proteolysis. Genetic replacement of the native passenger domain with heterologous proteins is an attractive strategy not only for applications such as biocatalysis, live-cell vaccines, and protein engineering but also for gaining mechanistic insights toward understanding AT translocation. The ability of ATs to efficiently display functional recombinant proteins containing multiple disulfides has remained largely controversial. By employing high-throughput single-cell flow cytometry, we have systematically investigated the ability of the Escherichia coli AT Antigen 43 (Ag43) to display two different recombinant reporter proteins, a single-chain antibody (M18 scFv) that contains two disulfides and chymotrypsin that contains four disulfides, by varying the signal peptide and deleting the different domains of the native protein. Our results indicate that only the C-terminal β-barrel and the threaded α-helix are essential for efficient surface display of functional recombinant proteins containing multiple disulfides. These results imply that there are no inherent constraints for functional translocation and display of disulfide bond-containing proteins mediated by the AT system and should open new avenues for protein display and engineering.  相似文献   

4.
Shigella surface protein IcsA and its cytoplasmic derivatives are localized to the old pole of rod-shaped cells when expressed in Escherichia coli. In spherical mreB cells, IcsA is targeted to ectopic sites and close to one extremity of actin-like MamK filament. To gain insight into the properties of the sites containing polar material, we studied the IcsA localization in spherical cells. GFP was exported into the periplasm via the Tat pathway and used as a periplasmic space marker. GFP displayed zonal fluorescence in both mreB and rodA-pbpA spherical E. coli cells, indicating an uneven periplasmic space. Deconvolution images revealed that the cytoplasmic IcsA fused to mCherry was localized outside or at the edge of the GFP zones. These observations strongly suggest that polar material is restricted to the positions where the periplasm possesses particular structural or biochemical properties.  相似文献   

5.
The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring.  相似文献   

6.
Proteins induced by anaerobiosis in Escherichia coli   总被引:16,自引:26,他引:16       下载免费PDF全文
The contribution of protein induction and repression to the adaptation of cells to changes in oxygen supply is only poorly understood. We assessed this contribution by measuring the levels of 170 individual polypeptides produced by Escherichia coli K-12 in cells growing aerobically or anaerobically with and without nitrate. Eighteen reached their highest levels during anaerobic growth. These 18 polypeptides include at least 4 glycolytic enzymes and pyruvate formate-lyase (beta-subunit). Most of these proteins were found at significant levels during aerobic growth and appeared to undergo metabolic regulation by stimuli other than anaerobiosis. Anaerobic induction ratios ranged from 1.8- to 11-fold, and nitrate antagonized the anaerobic induction of all of the proteins except one. The time course of synthesis of the proteins after shifts in oxygen supply revealed at least three distinct temporal patterns. These results are discussed in light of known physiological alterations associated with changes in oxygen availability.  相似文献   

7.
UDP-galactose 4-epimerase (EC 5.1.3.2, Gal E) from Escherichia coli catalyzes the reversible reaction between UDP-galactose and UDP-glucose. In this study, the Gal E gene from E. coli, coding UDP-galactose 4-epimerase, was cloned into pYD1 plasmid and then transformed into Saccharomyces cerevisiae EBY100 for expression of Gal E on the cell surface. Enzyme activity analyses with EBY100 cells showed that the enzyme displayed on the yeast cell surface was very active in the conversion between UDP-Glc and UDP-Gal. It took about 3 min to reach equilibrium from UDP-galactose to UDP-glucose.  相似文献   

8.
Abstract: To identify surface sialoglycoproteins of rat Schwann cells and to compare molecular weights of these sialoglycoproteins with those present in rat peripheral nervous system myelin, we prepared Schwann cells from sciatic nerves of 1–3-day-old rats and cultured them in monolayer. Surface sialoglycoproteins of the cultured cells were tritium-labeled by the periodateborohydride procedure and compared with sialoglycoproteins of adult rat peripheral nervous system myelin by fluorography following polyacrylamide slab gel electrophoresis in sodium dodecyl sulfate. Three radioactive bands with apparent molecular weights of 114,000–132,000, 105,000–115,000, and 44,000–56,000 were observed in both the Schwann cell and myelin preparations. Bands of similar apparent molecular weights were noted in Schwann cells metabolically radiolabeled with d -[1,6-3H]glucosamine. A band co-migrating with myelin P0 glycoprotein was the most intensely radiolabeled of all peptides in periodate-B3H4?treated myelin, but was present in only trace amounts in periodate-B3H4? or d -[1,6-3H]glucosamine radiolabeled Schwann cells. Many presumably non-myelin glycoproteins were identified in the cultured Schwann cells by the periodate-borohydride procedure and by incubation of the cells with d -[1,6-3H]glucosamine. An immunoprecipitation technique was used to detect radiolabeled peptides in a nonionic detergent extract of freshly prepared, surface-radioiodinated Schwann cells that were bound by a rabbit anti-Schwann cell serum preabsorbed with rat fibroblasts. Many radioactive peptides were detected in the immunoprecipitate, but the two most intensely radiolabeled had apparent molecular weights of 105,000–115,000 and 95,000–106,000. This study has identified a number of glycoproteins synthesized by cultured rat Schwann cells which resemble in apparent molecular weight the glycoproteins expressed in rat peripheral nervous system myelin and has defined Schwann cell surface proteins recognized by a specific anti-rat Schwann cell antiserum.  相似文献   

9.
Escherichia coli cells that contain the pss-93 null mutation are completely deficient in the major membrane phospholipid phosphatidylethanolamine (PE). Such cells are defective in cell division. To gain insight into how a phospholipid defect could block cytokinesis, we used fluorescence techniques on whole cells to investigate which step of the cell division cycle was affected. Several proteins essential for early steps in cytokinesis, such as FtsZ, ZipA, and FtsA, were able to localize as bands to potential division sites in pss-93 filaments, indicating that the generation and localization of potential division sites was not grossly affected by the absence of PE. However, there was no evidence of constriction at most of these potential division sites. FtsZ and green fluorescent protein (GFP) fusions to FtsZ and ZipA often formed spiral structures in these mutant filaments. This is the first report of spirals formed by wild-type FtsZ expressed at normal levels and by ZipA-GFP. The results suggest that the lack of PE may affect the correct interaction of FtsZ with membrane nucleation sites and alter FtsZ ring structure so as to prevent or delay its constriction.  相似文献   

10.
Intimins are members of a family of bacterial adhesins from pathogenic Escherichia coli which specifically interact with diverse eukaryotic cell surface receptors. The EaeA intimin from enterohemorrhagic E. coli O157:H7 contains an N-terminal transporter domain, which resides in the bacterial outer membrane and promotes the translocation of four C-terminally attached passenger domains across the bacterial cell envelope. We investigated whether truncated EaeA intimin lacking two carboxy-terminal domains could be used as a translocator for heterologous passenger proteins. We found that a variant of the trypsin inhibitor Ecballium elaterium trypsin inhibitor II (EETI-II), interleukin 4, and the Bence-Jones protein REI(v) were displayed on the surface of E. coli K-12 via fusion to truncated intimin. Fusion protein net accumulation in the outer membrane could be regulated over a broad range by varying the cellular amount of suppressor tRNA that is necessary for translational readthrough at an amber codon residing within the truncated eaeA gene. Intimin-mediated adhesion of the bacterial cells to eukaryotic target cells could be mimicked by surface display of a short fibrinogen receptor binding peptide containing an arginine-glycine-aspartic acid sequence motif, which promoted binding of E. coli K-12 to human platelets. Cells displaying a particular epitope sequence fused to truncated intimin could be enriched 200,000-fold by immunofluorescence staining and fluorescence-activated cell sorting in three sorting rounds. These results demonstrate that truncated intimin can be used as an anchor protein that mediates the translocation of various passenger proteins through the cytoplasmic and outer membranes of E. coli and their exposure on the cell surface. Intimin display may prove a useful tool for future protein translocation studies with interesting biological and biotechnological ramifications.  相似文献   

11.
Linear Cell Growth in Escherichia coli   总被引:12,自引:0,他引:12       下载免费PDF全文
Growth was studied in synchronous cultures of Escherichia coli, using three strains and several rates of cell division. Synchrony was obtained by the Mitchison-Vincent technique. Controls gave no discernible perturbation in growth or rate of cell division. In all cases, mean cell volumes increased linearly (rather than exponentially) during the cycle except possibly for a small period near the end of the cycle. Linear volume growth occurred in synchronous cultures established from cells of different sizes, and also for the first volume doubling of cells prevented from division by a shift up to a more rapid growth rate. As a model for linear kinetics, it is suggested that linear growth represents constant uptake of all major nutrient factors during the cycle, and that constant uptake in turn is established by the presence of a constant number of functional binding or accumulation sites for each growth factor during linear growth of the cell.  相似文献   

12.
The rigid cell wall peptidoglycan (murein) is a single giant macromolecule whose shape determines the shape of the bacterial cell. Insight into morphogenetic mechanism(s) responsible for determining the shape of the murein sacculus itself has begun to emerge only in recent years. The discovery that MfreB and Mbl are cytoskeletal actin homologues that form helical structures extending from pole to pole in rod-shaped cells has opened an exciting new field of microbial cell biology. MreB (in Gram-negative rods) and Mbl (in Gram-positive species) are essential for murein synthesis along the lateral wall and hence, the rod shape of the cell. Known members of the morphogenetic system include MreB (or Mbl), MreC, MreD and PBP2, but Rod A and murein biosynthetic enzymes involved in peptidoglycan precursor synthesis and assembly are likely to be recruited to the same multimolecular apparatus. However, the actual role of MreB in assembly of the morphogenetic complex is still not clear and little is known about regulatory mechanisms controlling the switch from lateral murein elongation to septa1 murein synthesis at the time of cell division.  相似文献   

13.
To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the Lac operator are inserted, which allows us to monitor the motion of the DNA. The movement of such a GFP spot is followed at 48 ms temporal resolution during 12s. The spots are found to diffuse within a confined space, so that the nucleoid appears to behave like a viscoelastic network. The distribution of the "particle" position in time can be fitted to a Gaussian function indicating that the motion of the particle is Brownian. An average self-diffusion constant Ds=0.12 microm(2) s-1 is derived via the time auto-correlation functions of the displacement and is compatible with the collective diffusion coefficient measured previously by dynamic light scattering. Restriction of a DNA sequence to a small region of the nucleoid is tentatively related to the existence of so-called supercoiling domains.  相似文献   

14.
15.
Ribosomal proteins located near the rRNA have been identified by cross linking to [14C]spermine with 1,5-difluoro-2,4-dinitrobenzene. The polyamine binds to double-stranded rRNA; those proteins showing radioactivity covalently bound after treatment with the bifunctional reagent should therefore be located in the vicinity of these regions of rRNA. Six proteins from the small subunit, S4, S5, S9, S18, S19 and S20 and ten proteins from the large subunit L2, L6, L13, L14, L16, L17, L18, L19, L22 and L27 preferentially take up the label. The results obtained with three proteins from the large subunit, L6, L16 and L27, show a high degree of variability that could reflect differences of conformation in the subunit population. Several proteins were drastically modified by the cross-linking agent but were not detected in the two-dimensional gel electrophoresis (e.g., S1, S11, S21, L7, L8 and L12) and therefore could not be studied.  相似文献   

16.
S. S. B. Gilder 《CMAJ》1967,96(20):1387-1388
  相似文献   

17.
Escherichia coli cell division is effected by a large assembly of proteins called the divisome, of which a subcomplex consisting of three bitopic inner membrane proteins, FtsQ, FtsB, and FtsL, is an essential part. These three proteins, hypothesized to link cytoplasmic to periplasmic events during cell division, contain large periplasmic domains that are of major importance for function and complex formation. The essential nature of this subcomplex, its low abundance, and its multiple interactions with key divisome components in the relatively accessible periplasm make it an attractive target for the development of protein-protein interaction inhibitors. Although the crystal structure of the periplasmic domain of FtsQ has been solved, the structure of the FtsQBL complex is unknown, with only very crude indications of the interactions in this complex. In this study, we used in vivo site-specific photo cross-linking to probe the surface of the FtsQ periplasmic domain for its interaction interfaces with FtsB and FtsL. An interaction hot spot for FtsB was identified around residue Ser-250 in the C-terminal region of FtsQ and a membrane-proximal interaction region for both proteins around residue Lys-59. Sequence alignment revealed a consensus motif overlapping with the C-terminal interaction hot spot, underlining the importance of this region in FtsQ. The identification of contact sites in the FtsQBL complex will guide future development of interaction inhibitors that block cell division.  相似文献   

18.
19.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

20.
Surface films of Escherichia coli colonies   总被引:1,自引:0,他引:1  
Abstract Escherichia coli colony surfaces were examined using SEM and TEM. The results indicated that bacterial colonies in the course of their development produce surface films which become thicker with increased growth duration. Membrane vesicles contribute to the formation of the surface film. The complex organization of the film suggests that it may perform specific functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号