首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
dUTPase prevents uracil incorporation into DNA by strict regulation of the cellular dUTP:dTTP ratio. Lack of the enzyme initiates thymineless cell death, prompting studies on enzyme regulation. We investigated expression pattern and localization of Drosophila dUTPase. Similarly to human, two isoforms of the fly enzyme were identified at both mRNA and protein levels. During larval stages, a drastic decrease of dUTPase expression was demonstrated at the protein level. In contrast, dUTPase mRNAs display constitutive character throughout development. A putative nuclear localization signal was identified in one of the two isoforms. However, immunohistochemistry of ovaries and embryos did not show a clear correlation between the presence of this signal and subcellular localization of the protein, suggesting that the latter may be perturbed by additional factors. Results are in agreement with a multilevel regulation of dUTPase in the Drosophila proteome, possibly involving several interacting protein partners of the enzyme. Using independent approaches, the existence of such macromolecular partners was verified.  相似文献   

2.
dUTP pyrophosphatase catalyses hydrolysis of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP) and inorganic pyrophosphate (PPi). Elimination of dUTP is vital since its misincorporation into DNA by DNA polymerases can initiate a damaging iterative repair and misincorporation cycle, resulting in DNA fragmentation and cell death. The anti-tumour activity of folate agonists and thymidylate synthase inhibitors is thought to rely on dUTP misincorporation. Furthermore, retroviral cDNA production may be particularly susceptible to the effects of dUTP misincorporation by virtue of the error-prone nature of reverse trans criptase. Consequently, dUTPase activity is an ideal point of intervention in both chemotherapy and anti-retroviral therapy. In particular, the dUTPase encoded by a human endogenous retrovirus (HERV-K) has been suggested to complement HIV infection and so is an attractive target for specific inhibition. Hence, we used site photoaffinity labelling, site-directed mutagenesis and molecular modelling to assign catalytic roles to the conserved amino acid residues in the active site of the HERV-K dUTPase and to identify structural differences with other dUTPase enzymes. We found that dUTP photoaffinity labelling was specific for a beta-hairpin motif in HERV-K dUTPase. Mutagenesis of aspartate residues Asp84 and 86 to asparagine within this beta-hairpin showed the carboxylate moiety of both residues was required for catalysis but not for dUTP binding. An increase in the pKa of both aspartate residues brought about by substitution of a serine residue with a glutamate residue adjacent to the aspartate residues increased activity by a factor of 1.67 at pH 8.0, implicating general base catalysis as the enzyme's catalytic mechanism. Conservative mutagenesis of Tyr87 to Phe resulted in a sevenfold reduction of dUTPase activity and a 3.3-fold reduction in binding activity, whilst substitution with an isoleucine residue totally abolished both catalytic activity and dUTP binding, suggesting that binding/activity is dependent on an aromatic side-chain at the base of the hairpin. Comparison of a homology-based three-dimensional model structure of HERV-K dUTPase with a crystallographic structure of the human dUTPase revealed displacement of a conserved alpha-helix in the HERV-K enzyme causing expansion of the HERV-K active site. This expansion may be responsible for the ability of the HERV-K enzyme to hydrolyse dTTP and bind the bulkier dNTPs in contrast to the majority of dUTPases which are highly specific for dUTP. Knowledge of the dUTPase catalytic mechanism and the distinctive topography of the HERV-K active site provides a molecular basis for the design of HERV-K dUTPase-specific inhibitors.  相似文献   

3.
Adult rabbit brain contains the enzymatic machinery to convert deoxyuridine to deoxyuridine triphosphate (dUTP). Although dUTP as dUMP can be readily incorporated into DNA in place of thymidine monophosphate, we detected no (3H)dUMP in newly synthesized (3H)DNA in adult rabbit brain after the intraventricular injection of (3H)deoxyuridine. Only (3H)thymidine was detected. The probable explanation for the lack of incorporation of uracil into adult rabbit brain DNA is the presence of a specific, high affinity dUTPase which converts dUTP to dUMP and PP. After homogenization and ammonium sulfate fractionation of adult rabbit brain (35 to 75% saturation), a high affinity, specific dUTPase was detected in the dialyzed enzyme preparation. The Km and Vmax of the dUTPase were 0.2 microM and 36 pmol/mg protein/min, respectively. No high affinity dUTPase activity was detectable in liver. In brain, another enzyme hydrolyzed dUTP and dTTP (NTPase( to their respective diphosphates. NTPase, unlike dUTPase, was not sensitive to heating at 65 degrees C for five minutes. Thus, brain, like other tissues, contains a high affinity, specific dUTPase presumably to "sanitize" the cells of dUTP and, thus, protect the integrity of newly synthesized DNA.  相似文献   

4.
The structure of Mycobacterium tuberculosis dUTP nucleotidohydrolase (dUTPase) has been determined at 1.3 Angstrom resolution in complex with magnesium ion and the non-hydrolyzable substrate analog, alpha,beta-imido dUTP. dUTPase is an enzyme essential for depleting potentially toxic concentrations of dUTP in the cell. Given the importance of its biological role, it has been proposed that inhibiting M.tuberculosis dUTPase might be an effective means to treat tuberculosis infection in humans. The crystal structure presented here offers some insight into the potential for designing a specific inhibitor of the M.tuberculosis dUTPase enzyme. The structure also offers new insights into the mechanism of dUTP hydrolysis by providing an accurate representation of the enzyme-substrate complex in which both the metal ion and dUTP analog are included. The structure suggests that inclusion of a magnesium ion is important for stabilizing the position of the alpha-phosphorus for an in-line nucleophilic attack. In the absence of magnesium, the alpha-phosphate of dUTP can have either of the two positions which differ by 4.5 Angstrom. A transiently ordered C-terminal loop further assists catalysis by shielding the general base, Asp83, from solvent thus elevating its pK(a) so that it might in turn activate a tightly bound water molecule for nucleophilic attack. The metal ion coordinates alpha, beta, and gamma phosphate groups with tridentate geometry identical with that observed in the crystal structure of DNA polymerase beta complexed with magnesium and dNTP analog, revealing some common features in catalytic mechanism.  相似文献   

5.
脱氧尿苷焦磷酸酶(dUTP pyrophosphatase,dUTPasc)广泛存在于真核、原核细胞和病毒等生物有机体中,通过催化水解脱氧尿苷三磷酸(dUTP),减少尿嘧啶在DNA合成中的错误掺入,降低细胞中的dUTP/dTTP比例,保证DNA复制的正确性和顺利进行。病毒编码的dUTPasc具有种属特异性,且与病毒的毒力和高效复制密切相关。本文就dUTPase的生物学功能、分类特征、表达调控、分布定位及病毒dUTPase功能的研究进展进行了概述,为深入开展dUTPase功能研究提供理论基础。  相似文献   

6.
Deoxyuridine triphosphate nucleotidohydrolase (EC 3.6.U.23) has been partially purified from HeLa S3 cells, and found to have an apparent molecular weight of 50--55 000 by gel filtration under non-denaturing conditions. The enzyme is specific for the hydrolysis of dUTP, requires Mg2+ and is inhibited by EDTA. The apparent Km for dUTP is 0.1 microM. Isolated HeLa cell nuclei were treated with dUTPase before pulse-labelling with [3H]dTTP which also had been pretreated with dUTPase. This pretreatment changed neither the total amount nor the size of the primary DNA pieces. A role for dUTP incorporation in their genesis can therefore be excluded and these primary DNA pieces are considered to be true intermediates in discontinuous DNA replication.  相似文献   

7.
dUTP was purified 120-fold from extracts of Acholeplasma laidlawii B-PG9 by Blue-Sepharose, Phenyl-Sepharose, hydroxyapatite, and DEAE-Sephacel chromatography techniques. The only substrate for the enzyme was dUTP with an apparent Km of 4.5 microM. The only reaction products were dUMP and PPi. The dUTPase did not exhibit any specific divalent cation requirement, but it was inhibited by EDTA. The enzyme was not inhibited by Pi or p-hydroxymercuribenzoate. The molecular weight of the enzyme was estimated by gel filtration chromatography to be 48,000, and its isoelectric point was 5.3. The enzyme was thermostable at 55 degrees C for 1 h. A. laidlawii dUTPase was distinguishable from KB (human epidermoid carcinoma) dUTPase by differences in electrophoretic migration, isoelectric point, and thermostability. The enzyme is important in preventing dUTP from being incorporated into DNA and may have a significant role in both the synthesis of thymidine- and PPi-dependent phosphorylations.  相似文献   

8.
9.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is responsible for the control of intracellular levels of dUTP thus controlling the incorporation of uracil into DNA during replication. Trypanosomes and certain eubacteria contain a dimeric dUTP-dUDPase belonging to the recently described superfamily of all-alpha NTP pyrophosphatases which bears no resemblance with typical eukaryotic trimeric dUTPases and presents unique properties regarding substrate specificity and product inhibition. While the biological trimeric enzymes have been studied in detail and the human enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies, little is known regarding the biological function of dimeric proteins. Here, we show that in Trypanosoma brucei, the dimeric dUTPase is a nuclear enzyme and that down-regulation of activity by RNAi greatly reduces cell proliferation and increases the intracellular levels of dUTP. Defects in growth could be partially reverted by the addition of exogenous thymidine. dUTPase-depleted cells presented hypersensitivity to methotrexate, a drug that increases the intracellular pools of dUTP, and enhanced uracil-DNA glycosylase activity, the first step in base excision repair. The knockdown of activity produces numerous DNA strand breaks and defects in both S and G2/M progression. Multiple parasites with a single enlarged nucleus were visualized together with an enhanced population of anucleated cells. We conclude that dimeric dUTPases are strongly involved in the control of dUTP incorporation and that adequate levels of enzyme are indispensable for efficient cell cycle progression and DNA replication.  相似文献   

10.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

11.
The African swine fever virus (ASFV) gene E165R, which is homologous to dUTPases, has been characterized. A multiple alignment of dUTPases showed the conservation in ASFV dUTPase of the motifs that define this protein family. A biochemical analysis of the purified recombinant enzyme showed that the virus dUTPase is a trimeric, highly specific enzyme that requires a divalent cation for activity. The enzyme is most probably complexed with Mg(2+), the preferred cation, and has an apparent K(m) for dUTP of 1 microM. Northern and Western blotting, as well as immunofluorescence analyses, indicated that the enzyme is expressed at early and late times of infection and is localized in the cytoplasm of the infected cells. On the other hand, an ASFV dUTPase-deletion mutant (vDeltaE165R) has been obtained. Growth kinetics showed that vDeltaE165R replicates as efficiently as parental virus in Vero cells but only to 10% or less of parental virus in swine macrophages. Our results suggest that the dUTPase activity is dispensable for virus replication in dividing cells but is required for productive infection in nondividing swine macrophages, the natural host cell for the virus. The viral dUTPase may play a role in lowering the dUTP concentration in natural infections to minimize misincorporation of deoxyuridine into the viral DNA and ensure the fidelity of genome replication.  相似文献   

12.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a key enzyme in pyrimidine nucleotide metabolism, specifically hydrolyzes deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate and inorganic pyrophosphate. This enzyme activity has been studied in cellular extracts from Allium cepa root meristem cells with two specific aims: (i) to determine how the properties of the plant enzyme compare with those of dUTPase purified from other sources, and (ii) to analyze the relationship between dUTPase activity and cell proliferation and cell differentiation. Plant dUTPase is highly specific for dUTP, with an apparent Km of 6 microM, is highly sensitive to EDTA and it is probably a metalloenzyme. Our results demonstrate the presence of high levels of dUTPase in both resting and proliferating root meristem cells. The enzyme activity appears to be tightly regulated during the cell cycle. dUTPase activity increases at the G1/S boundary, remains high throughout S phase, and shows almost undetectable levels during G1 and G2. We have also found that dUTPase activity in differentiated cells, located in the mature portion of the root, is barely detectable. Altogether our results indicate that dUTPase activity is modulated by the proliferation rate and that this activity progressively decreases as cells initiate their differentiation program.  相似文献   

13.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) catalyses the hydrolysis of dUTP to dUMP and PPi thus controlling the incorporation of uracil into DNA genomes. In Campylobacter jejuni dUTPase exhibits structural properties of dimeric proteins characteristic of protozoa of the Kinetoplastidae family. In the present study we perform a kinetic analysis of Campylobacter dUTPase using the continuous spectrophotometric method and show that the enzyme is highly specific for deoxyuridine nucleotides. The Michaelis-Menten constant for dUTP was 0.66 microM while the k(cat) was 12.3 s(- 1). dUDP was also efficiently hydrolysed although the specificity constant, k(cat)/K(m), was five fold lower than for dUTP. The reaction product and the non hydrolysable analogue alpha,beta imido dUDP are potent inhibitors of the enzyme while several analogues of dUMP with substituents at the 3'- and 5'-positions active against trimeric dUTPases, show poor inhibitory activity. Apparent structural and kinetic differences with other eukaryotic dUTPases suggest that the present enzyme might be exploited as a target for new drugs against campylobacteriosis.  相似文献   

14.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

15.
dUTPase is responsible for preventive DNA repair via exclusion of uracil. Developmental regulation of the Drosophila enzyme is suggested to be involved in thymine-less apoptosis. Here we show that in addition to conserved dUTPase sequence motifs, the gene of Drosophila enzyme codes for a unique Ala-Pro-rich segment. Kinetic and structural analyses of the recombinant protein and a truncation mutant show that the Ala-Pro segment is flexible and has no regulatory role in vitro. The homotrimer enzyme unfolds reversibly as a trimeric entity with a melting temperature of 54 degrees C, 23 degrees C lower than Escherichia coli dUTPase. In contrast to the bacterial enzyme, Mg(2+) binding modulates conformation of fly dUTPase, as identified by spectroscopy and by increment in melting temperature. A single well folded, but inactive, homotrimeric core domain is generated through three distinct steps of limited trypsinolysis. In fly, but not in bacterial dUTPase, binding of the product dUMP induces protection against proteolysis at the tryptic site reflecting formation of the catalytically competent closed conformer. Crystallographic analysis argues for the presence of a stable monomer of Drosophila dUTPase in crystal phase. The significant differences between prototypes of eukaryotic and prokaryotic dUTPases with respect to conformational flexibility of the active site, substrate specificity, metal ion binding, and oligomerization in the crystal phase are consistent with alteration of the catalytic mechanism and hydropathy of subunit interfaces.  相似文献   

16.
The essential enzyme dUTPase is responsible for preventive DNA repair via exclusion of uracil. Lack or inhibition of the enzyme induces thymine‐less cell death in cells performing active DNA synthesis, serving therefore as an important chemotherapeutic target. In the present work, employing differential circular dichroism spectroscopy, we show that D. mel. dUTPase, a recently described eukaryotic model, has a similar affinity of binding towards α,β‐imino‐dUTP as compared to the prokaryotic E. coli enzyme. However, in contrast to the prokaryotic dUTPase, the nucleotide exerts significant protection against tryptic digestion at a specific tryptic site 20 Å far from the active site in the fly enzyme. This result indicates that binding of the nucleotide in the active site induces an allosteric conformational change within the central threefold channel of the homotrimer exclusively in the eukaryotic enzyme. Nucleotide binding induced allosterism in the D. mel. dUTPase, but not in the E. coli enzyme, might be associated with the altered hydropathy of subunit interfaces in these two proteins.  相似文献   

17.
The gene encoding dUTPase from Pyrococcus woesei was cloned into Escherichia coli expression system. It shows 100% gene identity to homologous gene in Pyrococcus furiosus. The expression of N-terminal His(6)-tagged Pwo dUTPase was performed in E. coli BL21(DE3)pLysS and E. coli Rosetta(DE3)pLysS strain that contains plasmid encoding additional copies of rare E. coli tRNAs. E. coli Rosetta(pLysS) strain was found with two times higher expression yield of His(6)-tagged Pwo dUTPase than E. coli BL21(DE3)pLysS. The His(6)-tagged Pwo dUTPase was purified on Ni(2+)-IDA-Sepharose, dialyzed, and the enzyme activity was investigated. We found that His(6)-tag domain has no influence on dUTP hydrolytic activity. dUTP is generated during PCR from dCTP, which inhibits the polymerization of DNA catalyzed by DNA polymerase with 3(')-5(') exonuclease activity. We observed that the thermostable His(6)-tagged Pwo dUTPase used for the polymerase chain reaction with P. woesei DNA polymerase improves the efficiency of PCR and it allows for amplification of longer targets.  相似文献   

18.
To assess whether uracil DNA glycosylase and dUTP nucleotidohydrolase (dUTPase) can be involved in repair-type DNA synthesis associated to crossing-over or induced by UV and X-ray treatments, we have studied these enzyme activities in male mouse germ cells at specific stages of differentiation.Although the highest uracil DNA glycosylase activity was observed in dividing germ cells (spermatogonia and preleptotene spermatocytes), some activity was also detected in meiotic (3.5%) and post-meiotic (1.0%) cells with a relative maximum of activity at pachytene stage (4.7%) when meiotic crossing-over takes place. These findings suggest that uracil DNA glycosylase is involved, in this biological system, in DNA replication and in repair-type DNA synthesis.dUTPase is present at all the stages of spermatogenesis studied but, unlike thymidylate synthetase which is mainly associated with replicating germ cells, dUTPase activity is maximal in spermatocytes at pachytene stages. The data reported suggest that, in this biological system, the main role of dUTPase is to degrade dUTP to prevent misincorporation of uracil into DNA during crossing-over, rather than to participate in the biosynthetic pathway of dTTP.  相似文献   

19.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) (EC 3.6.1.23) derived from HeLa S3 cells has been purified to near homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of about 16,000 nmol of dUMP hydrolyzed per min/mg of protein. The dUTPase enzyme derived from HeLa S3 cells appears to be composed to two equal molecular mass subunits, each being about 22,500 daltons. Association of these subunits to produce a 45,000-dalton protein is promoted by MgCl2. In the presence of EDTA enzyme activity is abolished and the enzyme dissociates into its monomeric form. MgCl2 will completely reverse the inhibition caused by EDTA and promote subunit association. MnCl2 will also promote association of the dUTPase subunits. However, MnCl2 will not completely reverse inhibition by EDTA. In addition, purified dUTPase, extensively dialyzed to remove contaminating ions, is activated almost 2-fold by the addition of 5 mM MgCl2. In contrast, addition of 5 mM MnCl2 to the dialyzed enzyme preparation will cause more than a 50% decrease in enzyme activity. This data indicates that Mg2+ is the natural prosthetic group for this enzyme. The Km value of dUTP for the purified enzyme is 3 X 10(-6) M in the presence of MgCl2. The turnover number for this enzyme has been calculated to be 550 molecules of dUTP hydrolyzed per min under standard assay conditions. Infection of HeLa S3 cells with herpes simplex type 1 virus induces a distinct species of dUTPase. This new species of dUTPase has an isoelectric point of 8.0, compared to an isoelectric point in the range of 5.7 to 6.5 for the HeLa S3 dUTPase. Molecular weight determinations of this new species of dUTPase indicate that the native enzyme is monomeric with a molecular weight of about 35,000. The virally induced dUTPase is inhibited by EDTA and this inhibition is reversed by MgCl2. Unlike the HeLa S3 dUTPase, the virally induced enzyme does not appear to be composed of subunits.  相似文献   

20.
Human dUTPase is essential in controlling relative cellular levels of dTTP/dUTP, both of which can be incorporated into DNA. The nuclear isoform of the enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies. The recently determined three-dimensional structure of this protein in complex with an isosteric substrate analogue allowed in-depth structural characterization of the active site. However, fundamental steps of the dUTPase enzymatic cycle have not yet been revealed. This knowledge is indispensable for a functional understanding of the molecular mechanism and can also contribute to the design of potential antagonists. Here we present detailed pre-steady-state and steady-state kinetic investigations using a single tryptophan fluorophore engineered into the active site of human dUTPase. This sensor allowed distinction of the apoenzyme, enzyme-substrate, and enzyme-product complexes. We show that the dUTP hydrolysis cycle consists of at least four distinct enzymatic steps: (i) fast substrate binding, (ii) isomerization of the enzyme-substrate complex into the catalytically competent conformation, (iii) a hydrolysis (chemical) step, and (iv) rapid, nonordered release of the products. Independent quenched-flow experiments indicate that the chemical step is the rate-limiting step of the enzymatic cycle. To follow the reaction in the quenched-flow, we devised a novel method to synthesize gamma-(32)P-labeled dUTP. We also determined by indicator-based rapid kinetic assays that proton release is concomitant with the rate-limiting hydrolysis step. Our results led to a quantitative kinetic model of the human dUTPase catalytic cycle and to direct assessment of relative flexibilities of the C-terminal arm, critical for enzyme activity, in the enzyme-ligand complexes along the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号