首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Mammalian casein kinases I (CKI) belong to a family of serine/threonine protein kinases involved in diverse cellular processes including cell cycle progression, membrane trafficking, circadian rhythms, and Wnt signaling. Here we show that CKIalpha co-purifies with centaurin-alpha(1) in brain and that they interact in vitro and form a complex in cells. In addition, we show that the association is direct and occurs through the kinase domain of CKI within a loop comprising residues 217-233. These residues are well conserved in all members of the CKI family, and we show that centaurin-alpha(1) associates in vitro with all mammalian CKI isoforms. To date, CKIalpha represents the first protein partner identified for centaurin-alpha(1). However, our data suggest that centaurin-alpha(1) is not a substrate for CKIalpha and has no effect on CKIalpha activity. Centaurin-alpha(1) has been identified as a phosphatidylinositol 3,4,5-trisphosphate-binding protein. Centaurin-alpha(1) contains a cysteine-rich domain that is shared by members of a newly identified family of ADP-ribosylation factor guanosine trisphosphatase-activating proteins. These proteins are involved in membrane trafficking and actin cytoskeleton rearrangement, thus supporting a role for CKIalpha in these biological events.  相似文献   

4.
The Wingless (Wg)/Wnt signaling pathway regulates a myriad of developmental processes and its malfunction leads to human disorders including cancer. Recent studies suggest that casein kinase I (CKI) family members play pivotal roles in the Wg/Wnt pathway. However, genetic evidence for the involvement of CKI family members in physiological Wg/Wnt signaling events is lacking. In addition, there are conflicting reports regarding whether a given CKI family member functions as a positive or negative regulator of the pathway. Here we examine the roles of seven CKI family members in Wg signaling during Drosophila limb development. We find that increased CKIepsilon stimulates whereas dominant-negative or a null CKIepsilon mutation inhibits Wg signaling. In contrast, inactivation of CKIalpha by RNA interference (RNAi) leads to ectopic Wg signaling. Interestingly, hypomorphic CKIepsilon mutations synergize with CKIalpha RNAi to induce ectopic Wg signaling, revealing a negative role for CKIepsilon. Conversely, CKIalpha RNAi enhances the loss-of-Wg phenotypes caused by CKIepsilon null mutation, suggesting a positive role for CKIalpha. While none of the other five CKI isoforms can substitute for CKIalpha in its inhibitory role in the Wg pathway, several CKI isoforms including CG12147 exhibit a positive role based on overexpression. Moreover, loss of Gilgamesh (Gish)/CKIgamma attenuates Wg signaling activity. Finally, we provide evidence that several CKI isoforms including CKIalpha and Gish/CKIgamma can phosphorylate the Wg coreceptor Arrow (Arr), which may account, at least in part, for their positive roles in the Wg pathway.  相似文献   

5.
6.
The protein kinase C-potentiated inhibitor protein of 17kDa, called CPI-17, specifically inhibits myosin light chain phosphatase (MLCP). Phosphorylation of Thr-38 in vivo highly potentiates the ability of CPI-17 to inhibit MLCP. Thr-38 has been shown to be phosphorylated in vitro by a number of protein kinases including protein kinase C (PKC), Rho-associated coiled-coil kinase (ROCK), and protein kinase N (PKN). In this study we have focused on the association of protein kinases with CPI-17. Using affinity chromatography and Western blot analysis, we found interaction with all PKC isotypes and casein kinase I isoforms, CKIalpha and CKI. By contrast, ROCK and PKN did not associate with CPI-17, suggesting that PKC may be the relevant kinase that phosphorylates Thr-38 in vivo. CPI-17 interacted with the cysteine-rich domain of PKC and was phosphorylated by all PKC isotypes. We previously found that CPI-17 co-purified with casein kinase I in brain suggesting they are part of a complex and we now show that CPI-17 associates with the kinase domain of CKI isoforms.  相似文献   

7.
We have examined the activity and substrate specificity of the Saccharomyces cerevisiae Hrr25p and the Schizosaccharomyces pombe Hhp1, Hhp2, and Cki1 protein kinase isoforms. These four gene products are isotypes of casein kinase I (CKI), and the sequence of these protein kinases predicts that they are protein serine/threonine kinases. However, each of these four protein kinases, when expressed in Escherichia coli in an active form, was recognized by anti-phosphotyrosine antibodies. Phosphoamino acid analysis of 32P-labeled proteins showed phosphorylation on serine, threonine, and tyrosine residues. The E. coli produced forms of Hhp1, Hhp2, and Cki1 were autophosphorylated on tyrosine, and both Hhp1 and Hhp2 were capable of phosphorylating the tyrosine-protein kinase synthetic peptide substrate polymer poly-E4Y1. Immune complex protein kinases assays from S. pombe cells showed that Hhp1-containing precipitates were associated with a protein-tyrosine kinase activity, and the Hhp1 present in these immunoprecipitates was phosphorylated on tyrosine residues. Although dephosphorylation of Hhp1 and Hhp2 by Ser/Thr phosphatase had little effect on the specific activity, tyrosine dephosphorylation of Hhp1 and Hhp2 caused a 1.8-to 3.1-fold increase in the Km for poly-E4Y1 and casein. These data demonstrate that four different CKI isoforms from two different yeasts are capable of protein-tyrosine kinase activity and encode dual-specificity protein kinases.  相似文献   

8.
Casein kinase I (CKI) was recently reported as a positive regulator of Wnt signaling in vertebrates and Caenorhabditis elegans. To elucidate the function of Drosophila CKI in the wingless (Wg) pathway, we have disrupted its function by double-stranded RNA-mediated interference (RNAi). While previous findings were mainly based on CKI overexpression, this is the first convincing loss-of-function analysis of CKI. Surprisingly, CKIalpha- or CKIepsilon-RNAi markedly elevated the Armadillo (Arm) protein levels in Drosophila Schneider S2R+ cells, without affecting its mRNA levels. Pulse-chase analysis showed that CKI-RNAi stabilizes Arm protein. Moreover, Drosophila embryos injected with CKIalpha double-stranded RNA showed a naked cuticle phenotype, which is associated with activation of Wg signaling. These results indicate that CKI functions as a negative regulator of Wg/Arm signaling. Overexpression of CKIalpha induced hyper-phosphorylation of both Arm and Dishevelled in S2R+ cells and, conversely, CKIalpha-RNAi reduced the amount of hyper-modified forms. His-tagged Arm was phosphorylated by CKIalpha in vitro on a set of serine and threonine residues that are also phosphorylated by Zeste-white 3. Thus, we propose that CKI phosphorylates Arm and stimulates its degradation.  相似文献   

9.
The casein kinase I (CKI) family consists of widely distributed monomeric Ser/Thr protein kinases that have a preference for acidic substrates. Four mammalian isoforms are known. A full length cDNA encoding the CKI alpha isoform was cloned from a rabbit skeletal muscle cDNA library and was utilized to construct a bacterial expression vector. Active CKI alpha was expressed in Escherichia coli as a polypeptide of Mr 36,000. The protein kinase phosphorylated casein, phosvitin and a specific peptide substrate (D4). The enzyme was inhibited by the isoquinolinesulfonamide CKI-7, half-maximally at 70 microM. Heparin inhibited phosphorylation of the D4 peptide or phosvitin by CKI alpha. Polylysine activated when the D4 peptide was the substrate but had no effect on phosvitin phosphorylation. It is becoming clear that the individual CKI isoforms have different kinetic properties and hence could have quite distinct cellular functions.  相似文献   

10.
11.
Three cDNA clones encoding isoforms of casein kinase I (CKI) were isolated from Arabidopsis thaliana. One full-length clone, designated CKI1, contained an open reading frame of 1371 bp encoding a protein of 51,949 D with an isoelectric point of 9.7. In addition to the highly conserved catalytic domain (of about 300 amino acids), the Arabidopsis CKI isoforms contain 150 to 180 amino acid carboxyl-terminal extensions, which show among themselves a lower level of sequence conservation. These extensions do not show any sequence similarity to nonplant CKI isoforms, such as rat testis CKI delta, which is their closest isolated homolog, or to yeast CKI isoforms. Three additional isoforms of Arabidopsis CKI were found in the data bases of expressed sequence tags and/or were isolated serendipitously in nonspecific screening procedures by others. One of them also shows a carboxyl-terminal extension, but of only 80 amino acids. Casein kinase activity was detected in the soluble fraction of Escherichia coli strains expressing the CKI1 protein. This activity showed the crucial properties of CKI, including the ability to phosphorylate the D4 peptide, a specific substrate of CKI, and inhibition by N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide, a specific CKI inhibitor. Like several recombinant CKI isoforms from yeast, CKI1 was able to phosphorylate tyrosine-containing acidic polymers.  相似文献   

12.
The casein kinase I family of serine/threonine protein kinases is highly conserved from yeast to humans. Until only recently, both the function and regulation of these enzymes remained poorly uncharacterised in that they appeared to be constitutively active and were capable of phosphorylating an untold number of other proteins. While relatively little was known regarding the exact function of the higher eukaryotic isoforms, the casein kinase I (CKI) isoforms from yeast have been genetically linked to vesicular trafficking, DNA repair, cell cycle progression and cytokinesis. All five S. cerevisiae isoforms are known to be associated with discrete cellular compartments and this localization has been shown to be absolutely essential for their respective functions. New evidence now suggests that the CKI isoforms in more complex systems also exhibit non-homogeneous subcellular distributions that may prove vital to defining the function and regulation of these enzymes. In particular, CKI, the most-characterized vertebrate isoform, is associated with cytosolic vesicles, the mitotic spindle and structures within the nucleus. Functions associated with these localizations coincide with those previously reported in yeast, suggesting a conservation of function. Other reports have indicated that each of the remaining CKI isoforms have the capacity to make associations with components of several signal transduction pathways, thereby channeling CKI function toward specific regulatory events. This review will examine what is now known about the higher eukaryotic CKI family members from the perspective localization as a means of gaining a better understanding of the function and regulation of these kinases.  相似文献   

13.
14.
FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.  相似文献   

15.
16.
Casein kinases I (CKI) are serine/threonine protein kinases widely expressed in a range of eukaryotes including yeast, mammals and plants. They have been shown to play a role in diverse physiological events including membrane trafficking. CKI alpha is associated with synaptic vesicles and phosphorylates some synaptic vesicle associated proteins including SV2. In this report, we show that syntaxin-1A is phosphorylated in vitro by CKI on Thr21. Casein kinase II (CKII) has been shown previously to phosphorylate syntaxin-1A in vitro and we have identified Ser14 as the CKII phosphorylation site, which is known to be phosphorylated in vivo. As syntaxin-1A plays a key role in the regulation of neurotransmitter release by forming part of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, we propose that CKI may play a role in synaptic vesicle exocytosis.  相似文献   

17.
The proteasome is involved in the progression of the meiotic cell cycle in fish oocytes. We reported that the alpha4 subunit of the 26S proteasome, which is a component of the outer rings of the 20S proteasome, is phosphorylated in immature oocytes and dephosphorylated in mature oocytes. To investigate the role of the phosphorylation, we purified the protein kinase from immature oocytes using a recombinant alpha4 subunit as substrate. A protein band which well corresponded to the kinase activity was identified as casein kinase Ialpha (CKIalpha). Two-dimensional (2D) PAGE analysis showed that part of the alpha4 subunit was phosphorylated by CKIalpha in vitro. This spot was detected in purified immature 26S proteasome but not in mature 26S proteasome, demonstrate that the alpha4 subunit is phosphorylated by CKIalpha meiotic cell cycle dependently.  相似文献   

18.
19.
20.
Two isoforms of vasa mRNA and protein are present in a teleost fish, tilapia. One (vas-s) lacks a part of the N-terminal region found in the other isoform (vas). Both isoforms are expressed in oocytes through the embryonic stage when primordial germ cells (PGCs) localize in the lateral plate mesoderm. After PGC localization in the gonadal anlagen, vas-s expression increased and vas expression became undetectable. Expression of both isoforms was observed again after morphological gonadal sex differentiation, irrespective of genotypic sex. In ovary, compared with vas expression vas-s expression predominated throughout oogenesis. In testis, vas expression was predominant compared with vas-s during spermatogenesis. These results indicate that relative expression of two vasa isoforms is dependent upon germ cell differentiation and sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号