首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The high-affinity binding site for ATP of the holoenzyme of cAMP-dependent protein kinase (type I) from rabbit skeletal muscle has been investigated. Binding affinity of a series of ATP derivatives substituted at different sites in the molecule was determined by competition with tritiated ATP. The results were compared with data available from cAMP derivatives with the same substituents, in order to analyse the electronic and steric features of these two sites on the protein kinase. The comparison revealed significant differences of the effect of substituents towards the two sites. In particular the N6-derivatives of ATP and substituents affecting the gamma-phosphate indicate that the high-affinity ATP site of the protein kinase has similar properties as those found for phosphotransferase sites. The present results are consistent with the supposition that the high-affinity site for ATP on the holoenzyme is congruent with the phosphotransferase site of the catalytic subunit. Upon combination of catalytic and regulatory subunits this site would be transformed into a high-affinity site for ATP with simultaneous blocking of the phosphotransferase activity.  相似文献   

2.
The reaction of the phosphate residue transfer catalysed by histone kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) was studied. The phosphotransferase reaction was shown to obey the mechanism of ping-pong bi-bi type. After incubation of the catalytic subunit of histone kinase with [gamma-32P]ATP the incorporation of one mole of [32P]phosphage per mole of protein was observed. The tryptic [32P]phosphohistidine-containing peptide was isolated and its N-terminus and amino acid composition were determined. The 2',3'-dialdehyde derivative of ATP (oATP) was used as the affinity label for the catalytic subunit of cyclic-AMP-dependent histone kinase. The inhibitor formed an alidmine bond with epsilon-amino group of the lysine residue of the active site and was irreversibly bound to the enzyme after reduction by sodium borohydride with concurrent irreversible inactivation of the enzyme. After inactivation, about one mole of 14C-labelled inhibitor was incorporated per mole of the enzyme. ATP effectively protected the catalytic subunit of histone kinase against inactivation by oATP. Tryptic digestion of the enzyme-inhibitor complex led to the isolation of the 14C-labelled peptide of the active site of histone kinase. Basing on these results, the role of histidine and lysine residues in the active site of the catalytic subunit of histone kinase was suggested.  相似文献   

3.
Cyclic-GMP-dependent protein kinase contains two binding sites for cGMP, which have different affinities for cGMP. Autophosphorylation of the enzyme affects mainly the binding of cGMP to the 'high'-affinity site (site 1). The enzyme binds cAMP and cAMP stimulates the phosphotransferase activity of the native enzyme half-maximally at 44 microM. Autophosphorylation of the enzyme decreases the apparent Ka value to 7 microM. Autophosphorylation does not affect the catalytic rate of the enzyme if measured at a saturating concentration of ATP. Tritiated cAMP apparently binds at 4 degrees C to one site with a Kd value of 3 microM. Binding to the second site is not measurable. Autophosphorylation of the enzyme increases the affinity of the high-affinity site for cAMP sixfold (Kd 0.46 microM) and allows the detection of a second site. In accordance with these data the dissociation rate of [3H]cAMP from the high-affinity site is decreased from 4.5 min-1 to 1.2 min-1 by autophosphorylation. Experiments in which unlabeled cAMP competes with [3H] cGMP for the two binding sites confirmed these results. Recalculation of the competition curves by a computer program for two binding sites indicated that autophosphorylation decreases the Kd value for binding of cAMP to the high-affinity site from 1.9 microM to 0.17 microM. Autophosphorylation does not affect significantly the affinity for the second site. Kd values for site 2 varied from 17 microM to 40 microM. These results suggest that autophosphorylation of cGMP-dependent protein kinase increases the affinity of the enzyme for cAMP by affecting mainly the properties of binding site 1.  相似文献   

4.
The type I form of cAMP-dependent protein kinase binds MgATP with a high affinity, and binding of MgATP decreases the affinity of the holoenzyme for cAMP [Hofmann et al. (1975) J. Biol. Chem. 250, 7795]. Holoenzyme was formed here with a mutant form of the bovine recombinant type I regulatory subunit where the essential arginine in site A, Arg-209, was replaced with Lys. Although this mutation does not significantly change the high-affinity binding of MgATP to the holoenzyme, it does abolish high-affinity binding of cAMP to site A. In the absence of MgATP, binding of cAMP to site B is sufficient to promote dissociation of the holoenzyme complex and activation of the catalytic subunit [Bubis et al. (1988) J. Biol. Chem. 263, 9668]. In the presence of MgATP however, holoenzyme formed with this mutant regulatory subunit is very resistant to cAMP. The Kd(cAMP) was greater than 1 microM, and the Ka(cAMP) increased 60-fold from 130 nM to 6.5 microM in the presence of MgATP. Thus, MgATP serves as a lock that selectively stabilizes the holoenzyme and inhibits activation. Both site A and site B are shielded from cAMP in the presence of MgATP. These results suggest that Arg-209 may play a role in stabilizing the MgATP.holoenzyme complex in addition to its role in binding the exocyclic oxygens of cAMP when cAMP is bound to the regulatory subunit. The catalytic subunit also reassociates rapidly with this mutant regulatory subunit, and in contrast to the wild-type regulatory subunit, holoenzyme formation does not require MgATP.  相似文献   

5.
Using a radioactively tagged, photoaffinity analog of cAMP, 8-azidoadenosine-3′,5′-cyclic monophosphate (8-N3 cAMP), and [γ32P] ATP, the membranebinding properties of both the regulatory and catalytic subunits of the cAMP-activated protein kinase of human erythrocyte membranes were investigated. [32P] 8-N3 cAMP was used to locate and quantify regulatory subunits. Increased phosphorylation of specific membrane proteins by [γ32P] ATP was used to determine the presence of the catalytic subunit. The data support a mechanism which operates through a tight membrane-bound regulatory subunit and a catalytic subunit that is released from the membrane when cAMP is present and the Mg · ATP concentration is below approximately 10 μM. The catalytic subunit is not required for the Mg · ATP inhibition of 8-N3 cAMP binding. Experiments with a photoaffinity analog of ATP, 8-azidoadenosine triphosphate (8-N3ATP), support the hypothesis that ATP hydrolysis and phosphorylation are not involved in the regulation. The data indicate that the regulatory subunit contains an ATP regulatory site which inhibits 8-N3 cAMP binding and the release of the catalytic subunit. These results indicate that the membrane-bound type I enzyme (type IM) differs significantly from the soluble (type IS) enzyme studied in other tissues. These enzymes are compartmentalized by being in different cellular locations and are regulated differently by Mg · ATP.  相似文献   

6.
Purified cyclic adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase of bovine cardiac muscles catalyzes the incorporation of 2 mol of 32P from [gamma-32P]ATP to seryl residues in its cAMP-binding protein. The reaction appears to be catalyzed by the protein kinase itself rather than by a protein kinase kinase and is enhanced by cAMP and by the addition of polyarginine. Phosphorylation of the purified enzyme facilitates its dissociation by cAMP (Erlichman, J., Rosenfeld, R., and Rosen, O.M. (1974) J. Biol. Chem. 249, 5000-5003) but does not affect cAMP binding. At equilibrium, 2 mol of cAMP are bound to both the phospho- and dephospho-enzymes. Phosphorylation of protein kinase is reversible. Upon addition of ADP and Mg2+, phosphate is transferred from the protein to ADP, and ATP is formed. The reverse reaction is optimal at pH 5.5 unlike the forward reaction which has a broad, more alkaline pH activity optimum. It is activated by polyarginine and dependent upon the addition of cAMP to a much greater degree than the forward reaction. The data suggest that the catalytic subunit of protein kinase catalyzes the forward and reverse reactions but do not exclude the possibility that the holoenzyme may also be active. Autophosphorylation by protein kinase and dephosphorylation by phosphrprotein phosphatases of by reverals of the autophosphorylation reaction may regulate the sensitivity of certain protein kinases to activation by cAMP in vivo.  相似文献   

7.
An adenosine 3':5'-monophosphate-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) has been isolated from the human erythrocyte memebrane and the phosphotransferase activity exhibited by this enzyme has been purified 800-fold. In concentrated solutions, the membrane-derived protein kinase undergoes aggregation with a concomitant loss in observed phosphotransferase activity. This loss of activity can be restored by means of inducing deaggregation. The phosphotransferase activity of the protein kinase is virtually obliterated in the presence of high (300 mM) concentrations of sodium chloride. This effect is also reversible. The pH optimum for the phosphotransferase reaction that is catalyzed by the membrane-derived protein kinase is approximately 8. Micromolar concentrations of cAMP are optimal with respect to promoting the phosphotransferase reaction. Initial velocity and product inhibition studies were conducted on the cAMP-independent protein kinase derived from the cAMP-dependent enzyme. These studies indicate that the phosphotransferase reaction proceeds by a sequential kinetic mechanism.  相似文献   

8.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

9.
10.
In order to investigate the structure of the active site of the cAMP-dependent protein kinase catalytic subunit a synthesis of several previously unknown adenosine-5'-triphosphate (ATP) derivatives containing substituents of various nature at N(1), N(C6) and C(8) positions of the purine base was carried out. The interaction of these derivatives with a homogeneous preparation of the catalytic subunit of rabbit skeletal muscle cAMP-dependent protein kinase was investigated. All the nucleotide analogs were found to inhibit the enzyme activity; the inhibition was competitive with respect to ATP. It was assumed that the adenine moiety of the ATP molecule is bound to the active site of protein kinase by the hydrophobic interaction with the aromatic amino acid residues and by formation of the hydrogen bond between the exo-NH2-group of the substrate and a corresponding group of the enzyme. The "correct" binding of ATP to the enzyme active center is defined by the anti-conformation of the nucleotide.  相似文献   

11.
A method for the preparation of a homogenous catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase from pigeon breast muscle was developed. The molecular weight of the enzyme as determined by electrophoresis in the presence of sodium dodecyl sulfate was found to be 42000. The pH optimum of the catalytic subunit was around 8.0. The active site of the catalytic subunit was studied using some derivatives of ATP, containing different reactive groups in the triphosphate chain of the molecule. It may be assumed that the pH optimum of the enzyme inactivation by adenosine 5'-chloromethylpyrophosphonate and the protective effect of ATP suggest covalent binding of the imidazole ring in the enzyme active site. The kinetic mechanism of the protein kinase reaction was studied using the initial rate experiments and reaction product inhibition. The results obtained were consistent with a random Bi-Bi kinetic mechanism.  相似文献   

12.
J J Witt  R Roskoski 《Biochemistry》1975,14(20):4503-4507
Adenosine 3',5'-monophosphate (cAMP) dependent protein kinase (EC 2.7.1.37) catalyzes the phosphorylation of serine and threonine residues of a number of proteins according to the following chemical equation: ATP + protein leads to phosphoprotein + ADP. The DEAE-cellulose peak II holoenzyme from bovine brain, which is composed of regulatory and catalytic subunits, is resistant to ethoxyformic anhydride inactivation. After adding cAMP, the protein kinase becomes susceptible to ethoxyformic anhydride inhibition. Ethoxyformic anhydride (2mM) inhibits the enzyme 50% (5 min, pH 6.5, 30 degrees) in the presence of 10 muM cAMP, but less than 5% in its absence. The substrate, Mg2+-ATP, protects against inactivation suggesting that inhibition is associated with modification of the active site. Addition of regulatory subunit or Mg2+-ATP to the isolated catalytic subunit also prevents ethoxyformic anhydride inactivation. These results suggest that the regulatory subunit shields the active site of the catalytic subunit thereby inhibiting it. In contrast to the bovine brain or muscle DEAE-cellulose peak II holoenzyme, the bovine muscle peak I holoenzyme is susceptible to ethoxyformic anhydride inactivation in the absence of cAMP.  相似文献   

13.
Nucleotide-binding sites of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum were labeled by ultraviolet irradiation in the presence of [alpha-32P]ATP. A high-affinity site, located on subunit I (98 kDa), was identified as catalytic by the following criteria: ATP bound to subunit I was hydrolyzed and the cross-linked nucleotide was ADP; the specificity for ATP or ADP compared to that of other nucleotides was high; the tightly bound radionucleotide was exchangeable in the presence of excess unlabeled ATP and Mg2+; photolabeling of this site and enzyme inhibition due to tightly bound ADP were both dependent on the presence of Mg2+ and showed identical Kd values; treatment that restored the activity of the ADP-inhibited enzyme also led to the release of the tightly bound nucleotide from subunit I. In addition, a non-catalytic nucleotide-binding site was found, located on subunit II (71 kDa). This site did not hydrolyze ATP, its occupation was Mg2+ independent and the affinity for ATP and the nucleotide specificity were much lower than that of subunit I. We suspect that this site is nonspecific. These results indicate that H. saccharovorum ATPase is different from F1-ATPases which contain the catalytic site on the second largest subunit, but may be similar to other archaebacterial and vacuolar ATPases.  相似文献   

14.
H Aiba  J S Krakow 《Biochemistry》1980,19(9):1857-1861
Photoaffinity labeling of the cAMP receptor protein (CRP) of Escherichia coli with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has been demonstrated. 8-N3cAMP is able to support the binding of (3H)d(I-C)n by CRP, indicating that it is a functional cAMP analogue. Following irradiation at 254 nm, (32P)-8-N3cAMP is photocross-linked to CRP. Photolabeling of CRP by (32P)-8-N3cAMP is inhibited by cAMP but not by 5'AMP. The data indicate that (32P)-8-N3cAMP is covalently incorporated following binding at the cAMP binding site of CRP. The (32P)-8-N3cAMP-CRP digested with chymotrypsin was analyzed by NaDodSO4-polyacrylamide gel electrophoresis. Of the incorporated label, one-third remains associated with the amino-proximal alpha core region of CRP [Eilen, E., Pampeno, C., & Krakow, J.S. (1978) Biochemistry 17, 2469] which contains the cAMP binding domain; the remaining two-thirds of the label associated with the beta region are digested. Limited proteolysis of the (32P)-8-N3cAMP-CRP by chymotrypsin in the presence of NaDodSO4 shows the radioactivity to be distributed between the molecular weight 9500 (amino-proximal) and 13,000 (carboxyl-proximal) fragments produced. These results suggest that a part of the carboxyl-proximal region is folded over and close enough to the cAMP binding site to be cross-linked by the photoactivated (32P)-8-N3cAMP bound at the cAMP binding site.  相似文献   

15.
In a previous report on the ontogeny of the ovarian adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity during prepubertal development of the rat, we concluded that the 4-fold decline in cAMP-dependent protein kinase activity observed in ovaries of 21- to 23-day-old rats was due to the presence of a heat-labile inhibitor in the ovarian extracts (Hunzicker-Dunn et al., 1984). We developed an assay for this ovarian kinase inhibitor activity that was based on the observation that ovarian cytosol added to an exogenous catalytic subunit of cAMP-dependent protein kinase caused a time-dependent and ovarian cytosol protein concentration-dependent inhibition of exogenous catalytic subunit phosphotransferase activity. The present studies were conducted to evaluate the basis for this catalytic subunit inhibitor present in soluble rat ovarian extracts of prepubertal-aged rats. This inhibitor activity was absent from cytosol extracts of rat corpora lutea, rat liver, rabbit follicles, and rabbit corpora lutea. Inhibitor activity present in rat ovarian cytosol was not attributable to insufficient levels of the phosphorylation substrate Kemptide. Inhibitor activity was also not related to the presence of the large amount of catalytic subunit-free regulatory subunit of the cAMP-dependent protein kinase present in ovarian extracts of late juvenile-aged rats. Inhibitor activity, however, did correlate with an endogenous adenosine triphosphatase (ATPase) activity that reduced assay ATP concentrations below levels needed to accurately measure phosphotransferase activity, despite the presence of sodium fluoride (an ATPase inhibitor) and ATP concentrations 5- to 15-fold greater than the Km of the kinase for ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

17.
The regulatory subunit of cAMP-dependent protein kinase II (RII) from porcine heart was modified specifically and covalently using the photoaffinity reagent, 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP). In the presence of excess cAMP, the photo-dependent incorporation of 8-N3cAMP was abolished whereas excess AMP and ATP had no effect. A maximum incorporation of 0.5 mol of 8-N3cAMP was achieved/mol of regulatory subunit monomer (Mr = 55,000). This level of incorporation was obtained when the purified regulatory subunit was treated with urea prior to labeling to remove residual bound cAMP. When the regulatory subunit was labeled with radioactive 8-N3cAMP, cleaved with trypsin, and the tryptic peptides mapped in two dimensions, a single major radioactive peptide was observed. Chemical cleavage of the radioactively labeled RII with cyanogen bromide and subsequent chromatography on Sephadex G-50 also yielded a single major peak of radioactivity. The covalently modified cyanogen bromide peptide subsequently was purified to homogeneity using high performance liquid chromatography. Greater than 90% of the radioactivity that was incorporated into the regulatory subunit was recovered in this cyanogen bromide peptide which had the following sequence: Lys-Arg-Asn-Ile-Ser-His-Tyr (cAMP)-Glu-Glu-Cln-Leu-Val-Lys-Hse. When the Edman degradation of this peptide was carried out, the radioactivity derived from the 8-N3cAMP was released with the tyrosine residue at Step 7 identifying this residue as the specific site of attachment of the photoaffinity reagent.  相似文献   

18.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

19.
The binding affinities of the diastereoisomers of adenosine 3',5'-(cyclic)phosphorothioate, Sp-cAMP[S] and Rp-cAMP[S], for the cyclic AMP- (cAMP-)binding sites on purified and reconstituted pig heart type II cAMP-dependent protein kinase holoenzyme were determined by measuring the ability of these compounds to displace [3H]cAMP from this enzyme. Sp-cAMP[S], a cAMP agonist, displaced 50% of the [3H]cAMP bound to the holoenzyme at a concentration 10-fold higher than that of cAMP; Rp-cAMP[S], a cAMP antagonist, required a 100-fold higher concentration relative to cAMP. Activation of the isolated holoenzyme, determined as phosphotransferase activity, was measured in the presence of the agonist and in the absence and in the presence of increasing concentrations of the antagonist. The results of fitting the activation data to sigmoid curves with a non-linear-regression program and to Hill plots by using a linear-regression program showed that Rp-cAMP[S] had no effect on Vmax, increased the EC50 values for agonist activation and had no effect on the co-operativity of activation (h). A Ki value of 11 microM was determined for Rp-cAMP[S] inhibition of cAMP-induced activation of purified type II cAMP-dependent protein kinase. Electrophoresis of the holoenzyme on polyacrylamide gels under non-denaturing conditions in the presence of saturating concentrations of the diastereoisomers resulted in 100% dissociation of the subunits with Sp-cAMP[S] and 0% dissociation with Rp-cAMP[S]. Sp-cAMP[S], the isomer with an axial exocyclic sulphur atom, binds to the holoenzyme, releases the catalytic subunit and activates the phosphotransferase activity. Rp-cAMP[S], the isomer with an equatorial exocyclic sulphur atom, binds to the holoenzyme but does not result in dissociation, and thus acts as a competitive inhibitor of phosphotransferase activity.  相似文献   

20.
Adenosine-5'-phosphosulfate kinase (APS kinase) catalyzes the formation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the major form of activated sulfate in biological systems. The enzyme from Escherichia coli has complex kinetic behavior, including substrate inhibition by APS and formation of a phosphorylated enzyme (E-P) as a reaction intermediate. The presence of a phosphorylated enzyme potentially enables the steady-state kinetic mechanism to change from sequential to ping-pong as the APS concentration decreases. Kinetic and equilibrium binding measurements have been used to evaluate the proposed mechanism. Equilibrium binding studies show that APS, PAPS, ADP, and the ATP analog AMPPNP each bind at a single site per subunit; thus, substrates can bind in either order. When ATPgammaS replaces ATP as substrate the V(max) is reduced 535-fold, the kinetic mechanism is sequential at each APS concentration, and substrate inhibition is not observed. The results indicate that substrate inhibition arises from a kinetic phenomenon in which product formation from ATP binding to the E. APS complex is much slower than paths in which product formation results from APS binding either to the E. ATP complex or to E-P. APS kinase requires divalent cations such as Mg(2+) or Mn(2+) for activity. APS kinase binds one Mn(2+) ion per subunit in the absence of substrates, consistent with the requirement for a divalent cation in the phosphorylation of APS by E-P. The affinity for Mn(2+) increases 23-fold when the enzyme is phosphorylated. Two Mn(2+) ions bind per subunit when both APS and the ATP analog AMPPNP are present, indicating a potential dual metal ion catalytic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号