首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The litterbag technique was used to study the decomposition and nutrient dynamics of marsh litter in the four communities, Carex pseudocuraica (C.pa), C. lasiocarpa (C.la), Deyeuxia angustifolia (D.aa), and D. angustifolia-Shrub (D.aa-Srb), in Sanjiang Plain, Northeast China. Decomposition was divided into two periods in the first year, with the mass loss ranging from 11.7% to 31.4% of the initial mass during summer and autumn, accounting for more than 75% of the annual loss. The decomposition rates ranged from 0.000 612 to 0.000 945 d?1 depending on the depth of the flooding and its duration, and differed significantly in each community. The litter decomposed faster in communities with deeper and perennial flooding than in those with shallow and seasonal flooding. The initial ratios of C:N and C:P were also different among the four litter types, but these differences had no impact on the decomposition rates, suggesting that the main factor influencing the decomposition rates of marsh litter was the flooding status rather than the litter quality. The N concentrations in C.pa and C.la almost continuously increased over time, with their final values being 2.8 and 2.4 times higher than the initial ones, respectively. However, the nutrient dynamics in D.aa and D.aa-Srb offered another pattern, sharply falling in the first month and then gradually rising, with the values at the end of the experiment being close to those at the beginning. The litter accumulated substantial amounts of N in C.pa and C.la, while net N release from the litter was observed in both D.aa and D.aa-Srb. The difference may be caused by microorganisms' demand for nutrition, and then limited by the C:N ratios of litter and the availability of nitrogen from the soil and marsh water. In contrast with N dynamics, P concentrations of all the litter types apparently decreased during the first month, and then continued to decline in C.pa, remained constant in C.la and D.aa and increased slightly in D.aa-Srb. At the end of the experiment, the P concentrations decreased, respectively, by 56%, ?5%, 47% and 24% of the initial values of C.la, C. pa, D.aa and D.aa-Srb. The net P release was observed in all marsh litter over 480 days of decomposition and the intensity of the P release was different amongst communities, which may be regulated by ratios of initial C:P. The results suggested that in the marsh with the N limitation, litter tended to accumulate N and release P during decomposition and the intensity of accumulation or release was closely related to the initial C:N and C:P ratios.  相似文献   

2.
Macrophyte decomposition is a critical process that affects carbon and nutrient cycling, and energy flow, although the majority of the details involved in the process remain unclear. For the present study, a litter bag experiment was conducted to investigate the effects of sediment-borne nutrient and litter quality on the decomposition rates and nutrient release of four macrophyte life forms (emergent macrophyte: Phragmites australis, free-floating macrophyte: Hydrocharis dubia, floating-leaved macrophyte: Nymphoides peltata, submerged macrophyte: Ceratophyllum demersum), and a species mixture. Our results indicated that litter quality significantly influenced macrophyte decomposition and nutrient release. High-quality litter species (high initial nitrogen and phosphorus contents, as well as low C:N, C:P, and N:P ratios) decomposed more rapidly than low-quality litter species, and the initial C:N and C:P ratios, rather than the initial N and P contents, were effective indicators of the decomposition rate of macrophytes. Sediment-borne nutrients had little effect on the decomposition rate, yet a strong effect on the release of N and P, although the interactions between litter quality and sediment-borne nutrients significantly affected the decomposition rate. Three-way ANOVA analysis revealed that the litter quality imparted a more potent effect on the macrophyte decomposition rate and release of N and P than sediment-borne nutrients. These results implied that litter quality interacts with sediment-borne nutrients and may control macrophyte decomposition in shallow lakes.  相似文献   

3.
4.
The effect of nutrient availability on litter decomposition has been a major focus of global change ecology. The relative impacts of endogenous (litter) and exogenous (soil) nutrient availability remain unclear. We studied the nutrient dynamics of decomposition in litter from two species with contrasting litter nutrient contents and stoichiometry: Pinus massoniana and Castanopsis sclerophylla. During a 540-day field incubation, we manipulated exogenous nutrient levels by adding microbially available C (+C), N (+N), P (+P), and all three (+CNP) at 90-day intervals. Relative to the no-nutrient control (CK), nutrient additions decreased organic C retention in C. sclerophylla, with the greatest effect observed in +CNP. Nitrogen content in P. massoniana litter similarly increased with nutrient addition, particularly +P and +CNP. The P addition treatments also increased P content in the litter of both species. Nitrogen content in C. sclerophylla and organic C content in P. massoniana were unaffected by nutrient additions. The C/N and C/P ratios in decomposing C. sclerophylla litter were significantly lower in the CK treatment, while those of P. massoniana litter were influenced by the interaction of nutrient addition and decomposition time. Increased availability of C, N, and P individually and collectively alters nutrient release dynamics in decomposing foliar litter. Litter quality, as determined by source species, is a key determinant of the impact of exogenous nutrient inputs. A stronger effect of P addition than N addition indicates a relatively N-rich and P-poor ecosystem.  相似文献   

5.
The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.  相似文献   

6.
Xiaoniu Xu  Eiji Hirata 《Plant and Soil》2005,273(1-2):279-289
Litter decomposition, governing nutrient and C cycling, is strongly influenced by the chemical litter quality. In order to determine the interspecific variation in leaf decomposition rates and to understand the chemical basis for such variation, decomposition dynamics of seven common canopy species was investigated over 2year using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. The species studied are representatives of the vegetation in the study area and differed significantly in their chemical litter quality. Dry mass loss at the end of study varied in the order: Distylium racemosum< Quercus miyagii< Rapanea neriifolia< Symplocos confusa< Castanopsis sieboldii< Schima wallichii< Daphniphyllum glaucescens. All species showed a pattern characterized by a rapid initial decomposition followed by lower rates except for D. glaucescenswhich decomposition rate appeared to be rather constant. In the late phase, decomposition rates were correlated positively to initial N and ash contents and negatively to lignin content, lignin:N, C:N, and C:P ratios. The effects of N and lignin content or lignin:N ratio were stronger than other quality parameters. There was a wide range in patterns of N and P concentrations, from a net accumulation to a rapid loss in decomposition. The correlation between N and P release suggests that N and P dynamics may have influenced each other during litter decomposition. Analysis of initial quality for species showed that the C:P ratios were extremely high (range 1639–3811) but the N:P ratios were from 28 to 56, indicating a likely P-limitation for this forest. Our results suggest that P is an important control of litter decomposition and N and P dynamics.  相似文献   

7.
揭示竹林与其林下植被细根单独和混合分解特征,探讨竹林细根与其林下植被细根之间相互影响的潜在机制,为毛竹林林下植被的合理经营管理提供理论参考。采用原位分解袋法研究了四川长宁毛竹(Phyllostachys edulis)与林下植被芒箕(Dicranopteris pedata)细根分解和养分释放过程,试验周期为1年。结果表明(1)毛竹和芒箕细根初始化学组分有着明显差异,碳(C)含量、碳氮比(C/N)和碳磷比(C/P)毛竹显著高于芒箕(P0.05),而氮(N)含量、磷(P)含量和氮磷比(N/P)均芒箕高于毛竹(P0.05)。(2)毛竹和芒箕细根分解系数(k)分别为0.66±0.04和0.42±0.41,毛竹细根分解速率显著高于芒箕;土壤温度与分解速率呈显著正相关,是影响细根分解速率的关键环境因子。(3)毛竹和芒箕细根碳(C)、氮(N)、磷(P)养分释放均表现为净释放,毛竹细根碳(C)释放速率高于芒箕,但细根氮(N)和磷(P)释放率均低于芒箕。(4)混合分解的实测值和期望值对比结果表明毛竹和芒箕细根混合对分解速率和磷(P)元素的释放没有显著影响,但显著促进了碳(C)元素的释放,抑制了分解初期氮(N)元素的释放。毛竹与林下植被芒箕单独细根分解和养分释放特征均表现不同;细根混合分解速率无显著混合效应,但养分释放的混合效应表现出不同阶段性和不同方向(正或负),说明林下植被通过影响细根养分释放而影响竹林生态系统的养分循环。  相似文献   

8.
利用原位分解袋法研究了华西雨屏区苦竹(Pleioblastus amarus)和撑绿杂交竹(Bambusa pervariabilis × Dendrocala mopsi)人工林几种凋落物组分在模拟氮沉降下分解过程中养分释放状态,试验周期为2 a。氮沉降水平分别为对照(CK, 0 g · m-2 · a-1)、低氮(5 g · m-2 · a-1)、中氮(15 g · m-2 · a-1)和高氮(30 g · m-2 · a-1),每月下旬定量地对各处理施氮(NH4NO3)。结果表明,苦竹林和杂交竹林凋落物主要由凋落叶、凋落箨和凋落枝组成,其中凋落叶约占80%;两个竹种凋落物在分解过程中养分元素释放的种间差异主要与初始养分元素含量有关;凋落物养分元素初始含量对元素释放模式和最终净释放率的大小具有重要的决定作用;目前,这两种竹林生态系统土壤氮输入主要以大气氮沉降(8.24 g · m-2 · a-1)为主,同时凋落物氮输入(苦竹和杂交竹林分别为1.93,5.07 g · m-2 · a-1)也是一个重要途径;模拟氮沉降对苦竹凋落物碳、磷、钾、钙元素和杂交竹凋落物碳、氮、磷、钾、钙、镁元素释放的抑制作用较弱,处理与对照之间元素总释放率差异一般小于10%;氮沉降显著抑制了苦竹林凋落物氮元素释放,减小幅度为19.0%-27.2%,但由于氮沉降增加对土壤肥力的直接改良作用,氮沉降的增加并不会因为凋落物分解速率的降低造成植物生长所需养分供应的减少;从短期来看,在氮沉降继续增加的情况下,该地区这类竹林生态系统的碳吸存能力仍可能会因为N沉降对植物生长的促进作用而增加。  相似文献   

9.
Decomposition of Spartina anglica, Elytrigia pungens and Halimione portulacoides was studied for 20.5 months in situ in two habitats on a salt marsh in The SW Netherlands. Litter bags of three different mesh sizes were used to exclude meio- and/or macrofauna. The middle-marsh habitat was flooded more frequently than the plant-debris habitat in the highest marsh zone. Decomposition of the three species followed an exponential pattern of decay: instantaneous decay rates varied from 0.0026 to 0.0054 per day. Decay rates were significantly influenced by habitat factors and fauna, while there was a significant interaction between plant species and habitat. In case of a significant meio- and/or macrofauna effect, this became noticeable 12–16 weeks after the start of decomposition and resulted in a difference of 5–10% ash-free dry weight remaining after 20.5 months. Nematodes were the dominant microfaunal group in the plant litter. Densities were influenced by habitat conditions but not by resource quality, season and meio- and/or macrofauna. Only initial C/N and C/P ratios were correlated with differences in decomposition rates between the plant species. During the later stages of decomposition N and P concentrations of the plant litter were higher in the plant-debris habitat than in the middle-marsh habitat, probably as a result of fluctuating detritivores densities. The course of the decomposition process differed per plant species and per habitat. The results of this study underline the importance of knowledge of long-term decomposition rates.  相似文献   

10.
Decomposition of litter and the release of nutrients during decomposition were studied both above- and below-ground in a salt marsh in southern Australia. Above-ground litter of two species, Sclerostegia arbuscula and Sarcocomia quinqueflora, placed in a salt marsh bordering Westernport Bay, Victoria lost significantly different amounts of weight (61% and 50%, respectively) after 272 days in the field. Below-ground litter buried at depths of 10, 20 and 30 cm lost only 35-43% of its initial weight during the same period. Above-ground litter lost more N than below-ground litter (ca. 50% versus 30%, respectively), more P (ca. 80% versus 45%), more K (ca. 90% versus 65%), more Ca (ca. 50% versus 10%), and more Mg (ca. 40% versus 25%). Significant differences in the rate at which elements (N, P, Ca, and Mg) were lost occurred at different depths in below-ground litter. Above-ground litter of the two species examined also differed in the rates and amount of most elements (N, P, Ca, and Mg) lost.  相似文献   

11.
In this study, the litter of Catalpa fargesii and Eucommia ulmoides was treated with the water extracts of 5 types of coniferous litter for a 0.5-year indoor, simulated decomposition experiment, and the effects of plant secondary metabolites (PSMs) from coniferous litter on the mass loss and C, N and P release of the 2 types of litter were detected. The results indicated that the litter extracts of Platycladus orientalis, Pinus tabuliformis, Pinus armandii and Larix principis-rupprechtii significantly reduced the decomposition and overall final nutrient release rates of the litter of C. fargesii and E. ulmoides (in which only the extracts of P. orientalis litter did not affect the mass loss of E. ulmoides litter). Correspondingly, significant decreases in the activity of soil cellulase and polyphenol oxidase were observed during the entire decomposition period, especially during the middle and later decomposition stages, indicating that the PSM release from coniferous litter might inhibit the decomposition and nutrient cycling of C. fargesii and E. ulmoides litter by depressing the activity of lignocellulolytic enzymes during mixed decomposition. In conclusion, more attention should be given to the effects of leached litter PSMs on the decomposition of other types of litter during mixed afforestation or in the mixed transformation of pure forests.  相似文献   

12.
Plant litter decomposition is mainly affected by litter properties and environmental factors, but the influence of terrain on litter decomposition is not well understood. We studied the effects of terrain on litter decomposition over a period of 12 months at six locations in a typical steppe ecoregion and measured the concomitant release of carbon (C), nitrogen (N), and phosphorus (P). The study site has two aspects, shaded and sunny, each aspect having three slopes: 15°, 30°, and 45°. The same mixed litter was used at each location to exclude the influence of litter quality variation. Results showed that soil temperature and moisture, solar radiation, and plant species diversity varied by terrain, which in turn, affected the k‐value (standardized total effects, 0.78, 0.12, 0.92, 0.23, respectively) and the release of C (0.72, –0.25, 0.83, 0.24, respectively), N (0.89, –0.45, 0.76, 0.40, respectively) and P (0.88, 0.77, 0.58, 0.57, respectively). K‐value and C release decreased with increasing slope on shaded aspect, while increased with increasing slope on sunny aspect. The release of N and P decreased with increasing slope on the shaded aspect. K‐value and C, N, and P release were significantly higher on shaded than that on sunny aspect at 15° and 30°, while at 45°, it was higher on sunny than on shaded aspect. The litter mass loss was slower on shaded 45° and sunny 15°. So moderate grazing or mowing could be used to reduce litter accumulation and accelerate litter decomposition on these terrains. Structural equation modeling indicated that soil temperature and solar radiation had the greatest influence on k‐value and C, N, and P release, and these two factors were directly related to soil moisture and plant species diversity. Overall, our results emphasize the need to consider terrain for litter decomposition in typical steppe ecoregions.  相似文献   

13.
Mixed tree plantations provide greater ecosystem services than monocultures. Leguminosae tree species can be appropriate complements to achieve a sustainable soil management target. A key aspect of species trait complementarity is the litter mixture effects in the litter decomposition process. We evaluated how the mixture of poplar litter (Populus deltoides Marsh.) with Leguminosae tree species modulated the litter decomposition process and C, N and P recycling, through changes driven by the Leguminosae litter chemical traits. Under field conditions, we compared poplar litter alone (monoculture) with its 50:50 mixture with Enterolobuim contortisiliquum (Vell.) Morong., or Peltophorum dubium (Spreng.). Compared to poplar litter, its mixture with E. contortisiliquum had a 25% lower C:N ratio and a similar N:P ratio, whereas mixture with P. dubium had a 9% lower C:N and a 29% lower N:P ratios. The mixture with E. contortisiliquum showed a 64% faster decomposition rate, and 55% and 203% faster C and N release rates, respectively, compared to poplar. In contrast, in the mixture with P. dubium, there was no difference in the litter, C and N decay rates with poplar litter alone. The mixture with P. dubium had a 37% lower P retention compared to poplar, whereas P was released rather than retained in the mixture with E. contortisiliquum. The mixture with E. contortisiliquum showed a net antagonistic effect in the litter decomposition rate. However, in the mixture, poplar litter decomposed 33% faster and the E. contotrtisiliquum litter decomposed 35% slower than species alone. The C:N and N:P ratios in the litter mixture were relevant traits shaping the magnitude and direction of litter decomposition and nutrient recycling processes. The incorporation of both Leguminosae to monospecific poplar plantations could contribute to counteract P limitation in this system and to improve soil fertility and functioning.  相似文献   

14.
李巧玲  曾辉 《生态学报》2017,37(7):2342-2351
凋落叶分解是控制森林湿地物质循环的重要生态过程,是全球C、N等元素循环的重要一部分。以美国南卡罗来纳州10种典型植物的凋落叶为研究对象,通过2a的分解实验测定分解阶段凋落叶的生物量残留率、分解速率常数k和C、N残留百分比,探讨初始凋落叶化学性质对分解速率常数k的影响。结果表明:(1)十种凋落叶生物量在两年内降解至初始的14.5%—66.2%,种间差异可达4倍以上;分解速率常数k在0.26—1.64a~(-1)之间,针叶分解速率阔叶分解速率;(2)分解速率常数k与初始凋落叶酸溶性组分(AS)极显著正相关(P0.001),与初始C含量、酸不溶组分(AIF)和AIF/N比均显著负相关(P0.05);(3)凋落叶C残留百分比持续下降至10.2%—66.1%,而N残留百分比因物种与分解阶段不同呈现不同变化规律。结果表明,森林湿地中凋落叶初始C组分差异是其分解速率的种间极大差异的主要原因,评估森林湿地的C、N循环应充分考虑种间差异。  相似文献   

15.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

16.
This study dealt with the decomposition and nutrient release from the halophytes Atriplex portulacoides, Arthrocnemum macrostachyum, Limoniastrum monopetalum, and Spartina densiflora, the dominant species in the Castro Marim salt marsh, Portugal. Environmental effects on decomposition were also assessed. The study was carried out for one year using the in situ litterbag technique. S. densiflora showed a lower decomposition rate (k = 0.003 day−1) than the other study species (k = 0.005-0.009). Study species showed similar decomposition patterns, that is, the weight loss mostly occurred during the autumn-winter period (study beginning in November). This indicates that temperature in this period did not hamper the decomposition process. The decomposition rate was positively affected by the initial N concentration (r2 = 0.87, P < 0.05) and negatively by the C:N ratio (r2 = 0.86, P < 0.05) in decomposing materials. At the end of the study, S. densiflora and L. monopetalum, the species with lower initial N concentrations, retained much higher proportion of initial N (89-109%) than the others (5-14%). Also, S. densiflora with the lowest P concentration retained higher proportion of initial P (48%) than the others (5-20%). Release of K and Mg were also slower from S. densiflora and was associated with their initial low concentration in this species. The lowest Mn release was observed from A. macrostachyum and also in relation to the lowest initial concentration. Our study supports the hypothesis that decomposition patterns of marsh species are mostly associated with differences regarding their morphology and chemical composition. Given the higher resistance of S. densiflora to decomposition, its progressive spreading may result in accumulation of organic detritus overtime in invaded salt marshes.  相似文献   

17.
闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态   总被引:3,自引:0,他引:3  
曾从盛  张林海  王天鹅  张文娟  仝川 《生态学报》2012,32(20):6289-6299
采用分解袋法,对闽江河口湿地2种挺水植物——芦苇(Phragmites australis)和互花米草(Spartina alterniflora)花和叶枯落物的立枯和倒伏分解过程及C、N、P元素动态进行研究。结果表明:(1)立枯分解是2种湿地盐沼植物重要的分解阶段,干物质损失率在13.26%—31.89%之间。多项式模型能较好描述2种植物花和叶的枯落物分解残留率动态。(2)立枯分解阶段,芦苇花和叶的C含量主要为波动下降,互花米草较为稳定;倒伏阶段后期,2种植物都以升高为主。立枯分解阶段2种植物枯落物N含量略有下降,而倒伏阶段逐渐上升。分解过程中枯落物P含量的波动较大。(3)2种植物花和叶C、N的NAI值在分解过程中<100%。芦苇的花和叶中P的NAI值在立枯和倒伏分解阶段都经历了明显下降和升高的过程,而互花米草在立枯阶段变化不大,倒伏阶段下降较为明显。(4)与芦苇相比,互花米草的花和叶枯落物C库较高,N库较低,P库差异不大。  相似文献   

18.

Aims

Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech (Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes.

Methods

We measured initial litter chemistry, microbial activity in terms of respiration (CO2), litter mass loss, microbial biomass C and N (Cmic and Nmic), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH4 +, NO3 - and microbial community composition (phospholipid fatty acids – PLFAs).

Results

At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration.

Conclusions

The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment.  相似文献   

19.

Background

Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood.

Methodology/Principal Findings

A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01).

Conclusion/Significance

The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition.  相似文献   

20.
Decomposition of emergent macrophytes in a Wisconsin marsh   总被引:6,自引:3,他引:3  
Loss of both dry weight and nutrients during decomposition was measured using litter bags, both in a natural marsh and in controlled experiments. At 348 days dry weight remains of Typha latifolia, Sparganium eurycarpum, Scirpus fluviatilis shoot litter in the marsh were 47.5, 26.9, 51.4% respectively, and for the rootrhizome litter were 59.1, 42.1, 27.8% (Scirpus > Sparganium > Typha). Under controlled conditions both temperature and type of water produced significant effect on dry weight loss of Typha leaves. Sterilization and antibiotics effectively inhibited the growth and activities of decomposers. Initial weight, N, P, Ca, and Mg losses resulted chiefly from leaching. These elements accumulated in spring and summer; N exhibited the highest accumulation. In the laboratory, N accumulation occurred within 15 days, as a result of microorganisms inhabiting the litter. Increase in P, Ca, Mg in later stages of decomposition were attributed to microorganisms, epiphytes, and precipitation from solution. High C : N ratios and relatively low P, Ca, Mg in original standing crop may be the cause of low herbivore consumption, whereas the relative increases in N, P, Ca, Mg in decomposed litter provide a more nutrient-rich substrate for detritivores. Much of the nutrient uptake in the annual cycle is via microbial and detritivore growth rather than by macrophyte producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号