首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Muscle wasting is often associated with chronic inflammation. Because tumor necrosis factor alpha (TNF-alpha) has been implicated as a major mediator of cachexia, its effects on C2C12 myocytes were examined. TNF-alpha activated nuclear factor-kappaB (NF-kappaB) and interfered with the expression of muscle proteins in differentiating myoblasts. Introduction of a mutant form of inhibitory protein kappaBalpha (IkappaBalpha) restored myogenic differentiation in myoblasts treated with TNF-alpha or interleukin 1beta. Conversely, activation of NF-kappaB by overexpression of IkappaB kinase was sufficient to block myogenesis, illustrating the causal link between NF-kappaB activation and inhibition of myogenic differentiation. The inhibitory effects of TNF-alpha on myogenic differentiation were reversible, indicating that the effects of the cytokine were not due to nonspecific toxicity. Treatment of differentiated myotubes with TNF-alpha did not result in a striking loss of muscle-specific proteins, which shows that myogenesis was selectively affected in the myoblast stage by TNF-alpha. An important finding was that NF-kappaB was activated to the same extent in differentiating and differentiated cells, illustrating that once myocytes have differentiated they become refractory to the effects of NF-kappaB activation. These results demonstrate that inflammatory cytokines may contribute to muscle wasting through the inhibition of myogenic differentiation via a NF-kappaB-dependent pathway.  相似文献   

6.
7.
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in 67-kDa glutamic acid decarboxylase (p<0.05). KA (1.25-5.0 nmol) elicited internucleosomal DNA fragmentation that was inhibited by the AMPA/KA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dibenzo[f]quinoxaline-7-sulfonamide) but not by the NMDA receptor antagonist MK-801. A decrease in IkappaB-alpha protein levels, which was accompanied by an increase in NF-kappaB binding activity, was found from 6 to 72 h after KA (2.5 nmol) infusion. NF-kappaB was composed mainly of p65 and c-Rel as revealed by supershift assay. In addition, c-Myc and p53 increased from five- to sevenfold from 24 to 72 h after KA (2.5 nmol) administration. Immunohistochemistry revealed high levels of c-Myc and p53 immunoreactivity, mainly in medium-sized striatal neurons. Pretreatment with the cell-permeable recombinant peptide NF-kappaB SN50 (5-20 microg) blocked NF-kappaB nuclear translocation, but had no effect on AP-1 binding. NF-kappaB SN50 also inhibited the KA-induced up-regulation of c-Myc and p53, as well as internucleosomal DNA fragmentation. The apoptotic-like destruction of rat striatal neurons induced by KA receptor stimulation thus appears to involve biochemical mechanisms similar to those mediating the excitotoxic response to NMDA receptor stimulation. The present results provide additional support for the view that NF-kappaB activation contributes to c-Myc and p53 induction and subsequent apoptosis in an excitotoxic model of Huntington's disease.  相似文献   

8.
Evidence suggests that ageing is a major risk factor for cardiac dysfunction. Interactions between advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE) are known to cause chronic cellular activation, including activation of nuclear factor-kappaB (NF-kappaB), which has been implicated as a causal factor in the ageing process. To assess whether cardiomyocyte contractile function and the interaction of AGEs with RAGE in the heart are altered in ageing, 25- and 2-month-old male rats were compared. Mechanical properties were assessed in ventricular myocytes using an edge-detection system, including peak twitch amplitude (PTA), time-to-PTA (TPS), time-to-75% relengthening (TR75) and maximal velocity of shortening/relengthening (+/-dL/dt) in ventricular myocytes. AGEs were detected by using a fluorescence assay. The expression of RAGE and NF-kappaB was assessed through a Western blot analysis. Compared with young myocytes, aged myocytes displayed a prolonged TR75 at 1 Hz. With increasing stimulus frequency (from 2 to 4 Hz), aged myocytes' PTA was significantly reduced relative to young myocytes. Aged rat hearts displayed high level of AGEs, RAGE upregulation and NF-kappaB activation. These findings demonstrate impaired cardiomyocyte relaxation and reduced tolerance to increased stimulus frequency in aged rats, which might be associated with enhanced AGEs, RAGE expression, and NF-kappaB activation.  相似文献   

9.
10.
11.
12.
The killing of tumour cells that are resistant to soluble TNF-alpha (sTNF-alpha) by the membrane-bound form of TNF-alpha (mTNF-alpha) suggests that different intracellular signalling pathways are involved. We found that mTNF-alpha induced apoptosis in HL-60 cells and failed to cause degradation of inhibitor of kappa B alpha (IkappaB-alpha) and translocation and activation of nuclear factor kappa B (NF-kappaB), whereas sTNF-alpha failed to induce apoptosis, but lowered cytoplasmic inhibitor of kappa B alpha, induced translocation of NF-kappaB to the nucleus and experimentally increased activity of the regulated luciferase. Furthermore, mTNF-alpha upregulated the expression of TNF receptor associated factor (TRAF) 1 and failed to induce TRAF1 and TRAF2 membrane translocation, but led to cytoplasmic colocalization. In contrast, sTNF-alpha stimulated the expression of TRAF1 and TRAF2, recruiting both molecules onto the cell membrane poststimulation. These results suggest that the increased susceptibility of HL-60 cells to mTNF-alpha may be due to the failure of TRAF2 membrane translocation caused by the upregulation of TRAF1 expression and formation of a TRAF1/TRAF2 complex in the cytoplasm, thereby inhibiting NF-kappaB activation and inducing apoptosis.  相似文献   

13.
14.
15.
BACKGROUND: Although lipofection-induced TNF-alpha can activate nuclear factor kappaB (NF-kappaB), which, in turn, increases the transgene expression from plasmid DNA in which any NF-kappaB responsive element is incorporated, no attempts have been made to use such biological responses as NF-kappaB activation against a vector to enhance vector-mediated gene transfer. METHODS: A lipoplex composed of N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium and cholesterol liposome and plasmid DNA encoding firefly luciferase under the control of the cytomegalovirus immediate early promoter (pCMV-Luc) was intravenously injected into mice. Luciferase activity as well as NF-kappaB activation in the lung were evaluated. Then, a novel plasmid DNA, pCMV-kappaB-Luc, was constructed by inserting 5 repeats of NF-kappaB-binding sequences into the pCMV-Luc. RESULTS: NF-kappaB in the lung was activated by injection of the lipoplex and its nuclear localization was observed. An injection of lipopolysaccharide 30 min prior to the lipofection further activated NF-kappaB. At the same time, the treatment significantly increased the transgene expression by lipoplex, suggesting a positive correlation between expression and NF-kappaB activity. Based on these findings, we tried to enhance the lipoplex-based transgene expression by using NF-kappaB activation. The lipoplex consisting of pCMV-kappaB-Luc showed a 4.7-fold increase in transgene expression in the lung compared with that with pCMV-Luc. CONCLUSIONS: We demonstrated that NF-kappaB activation by lipoplex can be used to enhance lipoplex-mediated transgene expression by inserting NF-kappaB-binding sequences into plasmid DNA. These findings offer a novel method for designing a vector for gene transfer in conjunction with biological responses to it.  相似文献   

16.
17.
18.
19.
20.
gamma-Tocopherol, produced by many plants, is the major form of tocopherol in the United States diet. It is an effecient protector of lipids against peroxidative damage. Epidemiologic studies show that supplementation of diet with gamma-tocopherol is inversely related to the risk of death from cardiovascular disease. This study was conducted to examine the role of gamma-tocopherol in oxidized LDL (ox-LDL)-induced nuclear factor (NF)-kappaB activation and apoptosis in human coronary artery endothelial cells (HCAECs). Cultured HCAECs were treated with ox-LDL (10-40 microgram/ml). Incubation of HCAECs with ox-LDL resulted in apoptosis of HCAECs, as determined by TUNEL and DNA laddering. Ox-LDL degraded IkappaB protein and activated NF-kappaB in HCAECs (both P < 0.01 vs control), as determined by Western blot. Treatment of cells with gamma-tocopherol attenuated ox-LDL-mediated degradation of IkappaB and activation of NF-kappaB (both P < 0.01 vs ox-LDL alone). The presence of gamma-tocopherol also reduced ox-LDL-induced apoptosis (P < 0.01 vs ox-LDL alone). A high concentration of gamma-tocopherol (50 micromol/L) was more effective than the low concentration of gamma-tocopherol (10 micromol/L) in this process. These observations show that ox-LDL induces apoptosis of HCAECs at least partially by activation of NF-kappaB signal transduction pathway. gamma-Tocopherol significantly decreases ox-LDL-induced apoptosis of HCAECs by inhibiting the activation of NF-kappaB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号