首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a recombinant DNA library constructed from flow-sorted human chromosome 8 as a source of single-copy human probes. These probes have been screened for restriction fragment length polymorphism (RFLP) by hybridization to Southern transfers of genomic DNA from five unrelated individuals. We have detected six RFLPs distributed among four probes after screening 741 base pairs for restriction site variation. These RFLPs all behave as codominant Mendelian alleles. Two of the probes detect rare variants, while the other two detect RFLPs with PIC values of .36 and .16. Informative probes will be useful for the construction of a linkage map for chromosome 8 and for the localization of mutant alleles to this chromosome.  相似文献   

2.
Summary To detect new restriction fragment length polymorphisms that would cover human chromosome 7 with a network of genetic landmarks, a chromosome 7-specific phage gene library was screened for human single-copy fragments. With use of a somatic cell hybrid panel containing defined regions of human chromosome 7, 41 cloned human single-copy sequences were assigned to five regions of this chromosome. Of special importance are the cell hybrid clones GM1059Rag5 and 7851Rag10-1, derived from human cells with interstitial deletions spanning the bands 7q22-q32, within which the cystic fibrosis gene is located. Twelve new probes are described in 7q22-q32, five of which detect a total of six RFLPs.  相似文献   

3.
Isolation of polymorphic DNA segments from human chromosome 21.   总被引:23,自引:2,他引:21       下载免费PDF全文
A somatic cell hybrid line containing only human chromosome 21 on a mouse background has been used as the source of DNA for construction of a recombinant phage library. Individual phages containing human inserts have been identified. Repeat-free human DNA subclones have been prepared and used to screen for restriction fragment length polymorphisms to provide genetic markers on chromosome 21. Nine independently isolated clones used as probes identified a total of 11 new RFLPs. Four of the DNA probes recovered from the library have been mapped unequivocally to chromosome 21 using a panel of somatic cell hybrid lines. A fifth probe detected an RFLP on chromosome 21 as well as sequences on other chromosomes. This set of RFLPs may now form the basis for construction of a genetic linkage map of human chromosome 21.  相似文献   

4.
Summary Ten families with nephrogenic diabetes insipidus (NDI) have been analysed for restriction fragment length polymorphisms (RFLPs). A search for linkage was performed using various chromosome-specific single-copy DNA probes of known regional assignment to the human X chromosome. Close linkage was found between the disease locus and the markers DXS52, DXS15, DXS134 and the F8 gene. This result assigns the NDI gene to the subtelomeric region of the long arm of the X chromosome. The regional localization of the gene by the identification of closely linked markers should have repercussions for genetic counselling and prevention in NDI families.  相似文献   

5.
A cDNA probe (HOAT1) for ornithine aminotransferase (OAT) has recently been used to map (1) the structural gene for this enzyme to chromosome 10 and (2) several related DNA sequences to the X chromosome. We have defined six RFLPs for OAT, to explore its possible role in gyrate atrophy (GA) of the choroid and retina, an autosomal recessive genetic disorder associated with a deficiency of OAT activity. The RFLPs, which are detected by noncoding single-copy probes from the OAT gene and by subclones of the HOAT1 cDNA, all map on human chromosome 10, producing an overall level of heterozygosity for the OAT locus of 83%. Using the RFLPs, we have determined that the OAT locus segregates concordantly with GA in one available pedigree. Furthermore, the RFLPs display significant disequilibrium with GA, providing genetic evidence implicating a defect in the OAT structural gene as the cause of this disorder. The RFLPs for OAT are potentially applicable to prenatal diagnosis and carrier detection in families with a previous history of GA. They will also allow identification of specific haplotypes associated with GA chromosomes, as a guide for more detailed molecular-genetic investigations of the mutations underlying the disorder.  相似文献   

6.
Summary A systematic search for restriction fragment length polymorphisms (RFLPs) on the human Y chromosome was performed. DNA samples from 16–34 individuals were screened with five restriction enzymes and 12 Y-chromosomal probes, 3 of which detect lowly repetitive sequences and 9 of which are apparently single copy in genomic DNA. None of the single-copy probes revealed any variation. The repetitive sequence probe p21A1 (DYZ?) revealed a TaqI RFLP with q = 0.05. The frequency of fixed point mutations in Y-chromosomal DNA outside the pseudoautosomal region is probably less than 1 in 18000 bp.  相似文献   

7.
DNA isolated from a rodent-human hybrid cell line containing human chromosomes 3, 7, 9, 10, 14 and 22 was cloned in the plasmid vector pAT153. Recombinant plasmids containing inserts of human origin were identified by colony hybridization to 32P-labelled human DNA under conditions in which only repetitive sequences interact. Single- and low-copy sequences were liberated from these plasmids by restriction endonuclease digestion and used as hybridization probes against human DNA and DNA isolated from a panel of Chinese hamster-human hybrids. One single-copy probe was shown to react with a genomic sequence unique to human chromosome 7 and to recognize an apparent restriction fragment size polymorphism in human DNA.  相似文献   

8.
A rat cDNA clone encoding a portion of phosphate-activated glutaminase was used to identify DNA restriction fragment length polymorphisms (RFLPs) in sets of somatic cell hybrids and between wild-derived and inbred strains of mice. Segregation of rat and mouse chromosomes among somatic cell hybrids indicated assignment to rat chromosome 9 and mouse chromosome 1. Analysis of chromosome 1 alleles for several genes in an interspecific cross between Mus spretus and C3H/HeJ-gld/gld mice indicates that glutaminase can be positioned within 5.5 +/- 2.0 cM proximal to Ctla-4. Similarly, human-hamster somatic cell hybrids were examined for RFLPs, and four human EcoRI restriction fragments were found to hybridize with the rat glutaminase probe. Two of these restriction fragments cosegregated and mapped to human chromosome 2 in a region that is syntenic with mouse chromosome 1 and rat chromosome 9.  相似文献   

9.
Unusual restriction fragments were detected by DNA blot hybridization with PCNA (DNA polymerase-delta auxiliary protein) probe in one of seven cases of congenital malformations. Chromosomal in situ hybridization localized PCNA gene to region q31-35 of human chromosome 2. To discover the locus more closely associated with congenital malformations, a cloned DNA segment which has been mapped to chromosomal region 2q33-36 was tested for restriction fragment length polymorphisms (RFLPs) in these patients. The 2q33-36 probe hybridized with 2.1-kb, 1.9-kb and 1.7-kb fragments in ten normal control samples. In seven cases of congenital malformations examined, however, the band of 2.1 kb is absent in six cases and the band of 1.7 kb in one case. These results indicate that the locus closely linked to congenital malformations is present in the proximity of PCNA locus.  相似文献   

10.
With a human myelin-basic-protein (MBP) cDNA used as a probe, the human MBP gene has been mapped to chromosome region 18q22-q23 by a combination of Southern hybridization to a panel of somatic-cell hybrid DNAs and in situ hybridization to metaphase chromosomes. Restriction-fragment-length polymorphisms (RFLPs) have also been identified with this probe in human DNA, by means of the restriction enzymes BamHI, PvuII, and PstI. In studies of informative families, the alleles of the BamHI and PvuII polymorphisms have been shown to segregate as Mendelian traits.  相似文献   

11.
We have used a cDNA clone of the human urea cycle enzyme argininosuccinate synthetase (AS) to screen for restriction fragment length polymorphisms (RFLPs) using a large panel of restriction enzymes. The probe, pAS-1, detects from 15 to 27 human DNA fragments by Southern gel analysis. In addition to the structural locus on chromosome 9, AS-like sequences are found on at least 10 human chromosomes, including the X and Y. This large number of dispersed pseudogenes accounts for the multiplicity of hybridizing fragments detected with pAS-1. Of 37 restriction enzymes tested, 18 produced excellent digest patterns; of these 18 enzymes, three revealed high-frequency, independent RFLPs, testing a minimum of 16 individuals with each enzyme. The enzymes producing high-frequency polymorphisms are Hind III (allele frequencies .30 and .70), Hind II (.13 and .87), and Bam HI (.56 and .44). Most of the polymorphic alleles are found in Caucasians, American blacks, and Orientals. The RFLP detected with Hind III maps to chromosome 9 (9q11-q22), although not to the structural locus; the others are autosomal but otherwise unassigned. Two additional six-base enzymes and a four-base enzyme, Msp I, revealed further individual variation, but these variants have not been shown to segregate in families yet. We observed approximately 0.8% high-frequency RFLPs per cut site per enzyme or a minimum of .05% heterozygosity per nucleotide. pAS-1 should prove useful in assigning high-frequency RFLPs to several human chromosomes.  相似文献   

12.
Using a standard technique, 122 single-copy probes were screened for their ability to detect restriction fragment length polymorphisms (RFLPs) in the human genome. The use of a standardized RFLP screening enables the introduction of statistical methods in the analysis of differences in RFLP content between chromosomes and enzymes. RFLPs were detected from panels containing at least 17 unrelated chromosomes, digested with TaqI, MspI, BglII, HindIII, EcoRI, and PstI. Forty autosomal probes, representing a sample of 2,710 base pairs (bp) per haploid genome, were tested, and 24 RFLPs were found. With 82 X-chromosomal probes, 17 RFLPs were found in 6,228 bp per haploid genome. The frequency of X-chromosomal RFLPs is three times less than that of the autosomes; this difference is highly significant (P = less than .001). The frequency of RFLPs revealed by various restriction enzymes and the possibility that the X chromosome is a "low mutation" niche in the human genome are discussed.  相似文献   

13.
A cDNA for the pro alpha 2 chain of human type I collagen has been recently cloned and amplified. We have used this specific probe to identify the human chromosome carrying the pro alpha 2(I) collagen gene. The DNA from 17 independent human/hamster and human/mouse somatic cell hybrids was digested by Eco RI and the restriction pattern analyzed in Southern blot experiments, using the 32P-labeled cDNA as a hybridization probe. The gene coding for the pro alpha 2 collagen subunit could be unambiguously assigned to human chromosome 7. All the other chromosomes, including chromosome 17, were excluded.  相似文献   

14.
Summary A collection of 2,000 lambda phage-carrying human single-copy inserts (> 700 bp) were isolated from two chromosome-3 flow-sorted libraries. The single-copy DNA fragments were first sorted into 3p and 3q locations and about 700 3p fragments were regionally mapped using a deletion mapping panel comprised of two humanhamster and two-human-mouse cell hybrids, each containing a chromosome 3 with different deletions in the short arm. The hybrids were extensively mapped with a set of standard 3p markers physically localized or ordered by linkage. The deletion mapping panel divided the short arm into five distinct subregions (A-E). The 3p fragments were distributed on 3p regions as follows: region A, 26%; B, 31%; C, 4%; D, 4% and E, 35%. We screened 300 single-copy DNA fragments from the distal part of 3p (regions A and B) with ten restriction endonucleases for their ability to detect restriction fragment length polymorphisms (RFLPs). Of these fragments 110 (36%) were found to detect useful RFLPs: 35% detected polymorphisms with frequency of heterozygosity of 40% or higher, and 25% with frequency of 30% or higher. All polymorphisms originated from single loci and most of them were of the base pair substitution type. These RFLP markers make it possible to construct a fine linkage map that will span the distal part of chromosome 3p and encompasses the von Hippel-Lindau disease locus. The large number of single-copy fragments (2,000) spaced every 100–150 kb on chromosome 3 will make a significant contribution to mapping and sequencing the entire chromosome 3. The 300 conserved chromosome 3 probes will increase the existing knowledge of man-mouse homologies.  相似文献   

15.
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome.  相似文献   

16.
Summary A large kindred with the X-linked dominant form of peroneal muscular atrophy (Charcot-Marie-Tooth disease) was analyzed for individual variation in the length of DNA fragments after restriction endonuclease digestion. A systematic search was performed for linkage with a series of cloned single-copy DNA sequences of known regional assignment to the human X chromosome. Close linkage was found with the pDP34 probe (DXYS1 locus, Xq13-q21), suggesting that the gene responsible for the disease is located on the proximal long arm of the X chromosome.  相似文献   

17.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

18.
Localization of hepatocyte growth factor (HGF) gene on human chromosome 7.   总被引:1,自引:0,他引:1  
Hepatocyte growth factor (HGF) is a potent mitogen for hepatocytes and a variety of epithelial cells in culture. The cDNAs for human and rat HGF have been cloned by different researchers, including ourselves; however, no information on the genomic structure and chromosome localization of the HGF gene is yet available. To investigate HGF's chromosomal localization, DNA from a battery of human-hamster somatic cell hybrids was digested with BglII and analyzed by Southern blot using a 2.3-kb human HGF cDNA as a hybridization probe. The gene encoding the human HGF was assigned to human chromosome 7. Restriction enzyme and Southern blot analyses using the HGF cDNA and HGF-specific oligonucleotides as probes suggest that the human HGF gene exists as a single-copy gene and is composed of several exons.  相似文献   

19.
Cloning the complete human adenine phosphoribosyl transferase gene   总被引:5,自引:0,他引:5  
A M Murray  E Drobetsky  J E Arrand 《Gene》1984,31(1-3):233-240
We have isolated a clone from a human genomic lambda library which cross-hybridises with the cloned hamster adenine phosphoribosyl transferase gene (aprt). After restriction mapping and further hybridisation to the hamster gene, a series of putative human aprt-containing fragments has been isolated and tested for ability to transform adenine phosphoribosyl transferase-deficient (aprt-) strains of Chinese hamster ovary (CHO) cells to APRT proficiency. Transforming activity was detected in a 48-kb lambda clone, the 17.4-kb EcoRI insert, and an 8.6-kb HincII fragment. Smaller fragments have thus far shown no transforming activity. Transformants appear to be stable for the APRT+ phenotype, and human aprt DNA sequences are present in the hamster transformants. The 8.6-kb HincII fragment has been subcloned and the insert mapped. Nonrepetitive regions of this subclone have been identified, and should prove valuable for chromosome walking studies on human chromosome 16, familial studies of a human aprt- trait, the analysis of restriction fragment length polymorphisms (RFLPs) in the area surrounding the aprt gene, and the fine structure mapping of the mutations induced by chemical carcinogens and alkylating agents.  相似文献   

20.
Traditional morphological methods of Meloidogyne identification have been unsuccessful in distinguishing three South Carolina, USA Meloidogyne arenaria race 2 populations—Govan, Pelion, and Florence. These populations differ greatly in reproductive rate and aggressiveness on soybean hosts. Total genomic DNA from eggs of each population was digested with the restriction endonuclease Eco RI and Southern hybridization analyses were performed with single-copy and interspersed multi-copy cloned probes. Probes were isolated from a genomic library of Eco RI, M. arenaria DNA fragments cloned into pUC8. One probe, designated pE1.6A, when hybridized to Southern blots of M. arenaria genomic DNAs, displayed an interspersed repetitive pattern, and the RFLPs distinguished the Govan population from the Pelion and Florence populations. Another clone, pE6.0A, carrying moderately repeated sequences, distinguished the Pelion and Florence isolates. This communication demonstrates the utility of genomic RFLP analysis for distinguishing populations of the same race within the same species. To test the possible utility of these moderately repeated sequence probes for detecting the presence of nematode DNA in DNA samples from roots inoculated with varying numbers of nematodes, dot blot hybridization analyses were performed. It is possible to detect as few as 30 nematodes per root sample with these cloned probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号