首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amino acid changes in the retina, vitreous, lens, iris-ciliary body and cornea of the rat eye were determined during postnatal growth. The amino acid concentrations of the ocular tissues showed varying profiles at various developmental stages. These results suggest a different timetable for development of each ocular tissue or indicate a synthesis of specific proteins in the postnatal period. Adult amino acid levels appeared to be fully reached on the 30th day after birth at the latest. Quantitatively the greatest changes were observed in taurine concentrations, which increased in all five ocular tissues during maturation. GABA changes paralleled those of taurine in the retina, whereas in the other ocular tissues GABA changes were very low. The greatest decrease in glutamic acid and aspartic acid concentration during postnatal development was in the lens, where these amino acids probably are needed for the synthesis of the lenticular proteins, the alpha-, beta-, and gamma-crystallines.  相似文献   

2.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

3.
The effect of prolonged treatment (10 days) with the anticonvulsant drugs diphenylhydantoin (DPH), phenobarbitone, sodium valproate, ethosuximide and sulthiame, both singly and in combination, on regional rat brain amino acid neurotransmitter concentrations (GABA, glutamate, aspartate and taurine) were assessed. DPH had a major effect in the cerebellum and hypothalamus in that it significantly reduced cerebellar GABA, taurine and aspartate and hypothalamic GABA and aspartate. Sodium valproate significantly elevated GABA and taurine in most regions. Aspartate and glutamate were less affected. Phenobarbitone significantly elevated GABA concentrations in all brain regions, while taurine concentration was only elevated in the cerebral cortex. Ethosuximide induced changes were small compared to the other anticonvulsants while sulthiame produced complex changes. Anticonvulsant drugs administered in combination resulted in complex changes, suggesting that their mode of action is different.  相似文献   

4.
Zeng K  Xu H  Mi M  Zhang Q  Zhang Y  Chen K  Chen F  Zhu J  Yu X 《Neurochemical research》2009,34(2):244-254
The preventive effect of dietary taurine supplementation on glial alterations in retina of streptozotocin-induced diabetic rats was examined in this study. Blood glucose content, content of taurine, glutamate and <gamma>-amino butyric acid (GABA) and expression of glial fibrillary acid protein (GFAP), vascular endothelial growth factor (VEGF), glutamate transporter (GLAST), glutamine synthetase (GS) and glutamate decarboxylase (GAD) in retina were determined in diabetic rats fed without or with 5% taurine in a controlled trial lasting 12 weeks, with normal rats fed without or with 5% taurine served as controls. Dietary taurine supplementation could not lower glucose concentration in blood (> 0.05), but caused an elevation of taurine content and a decline in levels of glutamate and GABA in retina of diabetic rats (< 0.05). The content of GABA in normal control group was not altered by taurine supplementation. With supplementation of taurine in diet, lower expression of GFAP and VEGF while higher expression of GLAST, GS and GAD in retina of diabetic rats were determinated by RT-PCR, Western-blotting and immunofluorescence (< 0.05). GFAP, VEGF, GLAST, GS and GAD expressions in normal controls were not altered by taurine treatment. This may have prospective implications of using taurine to treat complications in diabetic retinopathy.  相似文献   

5.
Summary The amino acid taurine plays an important trophic role during development and regeneration of the central nervous system. Other amino acid systems, such as those for glutamate and gamma-aminobutyric acid (GABA), are modified during the same physiological and pathological processes. After crushing the optic nerve, goldfish retinal explants were plated in the absence and in the presence of different amino acids and amino acid receptor agonists. The length and the density of the neurites were measured at 5 days in culture. Taurine increased the length and the density of neurites. Glutamate and glycine increased them at low concentration, but were inhibitors at higher concentration. The combination of N-methyl-D-aspartate (NMDA) and glycine produced a greater inhibitory effect than NMDA alone. NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) added simultaneously with taurine impaired the stimulatory effect of the latter. GABA stimulated the emission of neurites in a concentration dependent manner. Hypotaurine also elevated the length of neurites, but cysteinesulfinic acid did not produce a significant effect. The concentrations of taurine, glutamate and GABA were determined by HPLC with fluorescent detection in the retina of goldfish at various days post-crushing the optic nerve. The levels of taurine were significantly increased at 48 h after the crush, and were elevated up to 20 days. Glutamate level decreased after the lesion of the optic nerve and was still low at 20 days. GABA concentration was not significantly different from the control. The interaction of these amino acids during the regenerative period, especially the balance between taurine and glutamate, may be a determinant in restoring vision after the crush.Abbreviations AMPA alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - GABA gamma-aminobutyric acid - NMDA N-methyl-D-aspartate  相似文献   

6.
FREE AMINO ACIDS IN DEVELOPING RAT RETINA   总被引:5,自引:4,他引:1  
—During postnatal growth the free amino acids pattern of rat retina differs at various developmental stages. The adult level for individual amino acids is reached on the 30th day of maturation. During differentiation the taurine, glutamic acid, GABA, glutamine, aspartic acid, glycine arginine, methionine and histidine levels increase while proline. alanine, ornithine and tyrosine decrease.  相似文献   

7.
The effects of one intraperitoneal injection of 60–65 mg/kg of 3-acetylpyridine (3-AP) on the levels of aspartate, glutamate, GABA, taurine, glycine, and alanine in the cerebellum, medulla, telencephalon, and diencephalon-mesencephalon of the rat were studied at various times (4–28 days) after injection. In the first 4–7 days, the levels of glutamate, GABA, glycine, and alanine in the cerebellum were 10–30% higher in the 3-AP-treated rats than in the control animals. By day 14, the levels of these four amino acids were normal (in the case of glutamate and glycine) or below normal (for GABA and alanine). By day 21, the values for GABA and alanine returned to normal. In the first 7 days, the level of aspartate in the cerebellum was the same in both the 3-AP- and saline-injected groups. From days 14 to 28, the level of aspartate in the cerebellum was 10–20% lower in the 3-AP-injected group than in the saline-treated animals. The level of taurine in the cerebellum was 15–30% lower in the 3-AP group than in the control group from days 7 to 28. The pattern of changes observed in the medulla in the first 7 days was similar to that found in the cerebellum for this period. However, unlike the data for the cerebellum, the level of aspartate in the medulla was unchanged by the 3-AP injection from day 14 to day 28, and the level of glutamate in the medulla remained higher (10–15%) from days 14 to 28 in the 3-AP-injected animals with respect to control values. The levels of taurine in the medulla were lower (10–15%) from day 7 to day 28 in the 3-AP injected group with respect to control values. The injection of 3-AP did not alter the levels of aspartate, glutamate, GABA, taurine, glycine, or alanine in the telencephalon on days 7, 14, 21, or 28 and in the diencephalon-mesencephalon on day 21 with respect to control levels.  相似文献   

8.
Changes in amino acid concentrations were studied in the cortex, cerebellum, and hippocampus of the rat brain, after 20 min of seizure activity induced by kainic acid, 47 mumol/kg i.v.; L-allylglycine, 2.4 mmol/kg i.v.; or bicuculline, 3.27 mumol/kg i.v. in paralysed, mechanically ventilated animals. Metabolic changes associated with kainic acid seizures predominate in the hippocampus, where there are decreases in aspartate (-26%), glutamate (-45%), taurine (-20%), and glutamine (-32%) concentrations and an increase in gamma-aminobutyric acid (GABA) concentration (+ 26%). L-Allylglycine seizures are associated with generalized decreases in GABA concentrations (-32 to -54%), increases in glutamine concentrations (+10 to +53%), and a decrease in cortical aspartate concentration (-14%). Bicuculline seizures, in fasted rats, are associated with marked increases in the levels of hippocampal GABA (+106%) and taurine (+40%). In the cerebellum, there are increases in glutamine (+50%) and taurine concentrations (+36%). These changes can be explained partially in terms of known biochemical and neurophysiological mechanisms, but uncertainties remain, particularly concerning the cerebellar changes and the effects of kainic acid on dicarboxylic amino acid metabolism.  相似文献   

9.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

10.
Abstract: Tissue concentrations of uric acid were determined in the spinal cord, cerebellum, caudate-putamen, and cerebral cortex of developing mice following intraventricular inoculation with murine cytomegalovirus (MCMV) on postnatal day 10. Transient signs of neurological impairment were observed in MCMV-infected animals beginning on days 13–16 and continuing until days 19–21. At the onset of neurological impairment, uric acid concentrations in tissues from infected animals were 17–60-fold greater than in control animals. On postnatal day 70, 60 days after inoculation and 40 days after resolution of neurological signs, uric acid levels were still two- to threefold greater in infected animals. Histological examination revealed signs of focal ischemia in the cerebral and cerebellar cortices of MCMV-infected mice only at the onset of neurological impairment, with ischemic cell changes in some pyramidal neurons of the cerebral cortex. These results indicate that uric acid may be a sensitive marker of persistent vascular pathology resulting from cytomegalovirus infection of the developing nervous system  相似文献   

11.
Excitatory (glutamate, aspartate) or inhibitory amino acids (-aminobutyric acid: GABA, taurine) and glutamine contents were examined in acutely induced cerebral ischemia in spontaneously hypertensive rats. At 20 min ischemia most of these amino acids remained unchanged, but glutamine significantly decreased by 14% in the CA3 hippocampal subfield. At 60 min ischemia glutamate significantly decreased by 14% in the CA3, aspartate by 17–26% in the CA3, cingulate cortex, septum and striatum. In contrast, GABA significantly increased by 48–106% in the cortices (frontal, parietal and cingulate), striatum and nucleus accumbens, but insignificantly in hippocampal subrïelds. Likewise, taurine increased in the parietal cortex and nucleus accumbens. Glutamine showed heterogeneous changes (increase in the nucleus accumbens and decrease in the CA3). Amino acid levels change during ischemia, but their changes are varied in each area, implying that different reaction of amino acids may explain the selective vulnerability to cerebral ischemia.  相似文献   

12.
Sprague-Dawley dams were fed either a protein-calorie deficient or control diet from day 5 to day 21 after parturition. The concentrations of seven amino acids (aspartate, glutamate, gamma-aminobutyric acid, glycine, glutamine, serine, and taurine) were determined in brain regions from 17-day-old undernourished offspring and from 35-day-old rehabilitated rats. The brain regions examined were the cortex, cerebellum, corpus striatum, hippocampus, hypothalamus, brainstem, and midbrain. At 17 days of age, taurine was the amino acid with the highest concentration, whereas at 35 days glutamate had the highest concentration. This change was due to the fact that the concentration of taurine decreased significantly in all brain regions between 17 and 35 days, whereas the concentration of glutamate remained high or increased somewhat in all brain regions except the hypothalamus and brainstem. When the age-matched offspring of control and undernourished rats were compared, several interesting and significant differences were found. The concentrations of glutamate and aspartate were significantly lower (decreased 16-34%) in the cerebellum, brainstem, cortex, and midbrain in 17-day-old undernourished rats. The aspartate level was also significantly decreased in the corpus striatum and hypothalamus in 17-day-old offspring. However, the deficiencies of aspartate and glutamate were transient and reversible. In contrast, the concentration of taurine was increased in the hypothalamus (31%) and hippocampus (12-33%) at both 17 and 35 days of age and in the midbrain (17%) at 17 days. Other transient abnormalities in amino acid levels were found in undernourished offspring. The results of these experiments suggest that undernutrition during lactation causes delayed CNS development, which is manifested in altered concentrations of the neurotransmitters aspartate, glutamate, and taurine.  相似文献   

13.
We have previously demonstrated that 4-day-treatment of mice with bilobalide, a sesquiterpene of Ginkgo biloba L., increases GABA levels in mouse brain, but, effects of chronic treatment with it are not clear. To study effects of chronic treatment of mice with bilobalide on amino acid levels in the brain, we determined the levels of aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in the hippocampus, striatum and cortex. Bilobalide (3 mg/kg/day) was administered orally to 4-week-old mice for 40 days. Bilobalide treatment resulted in a significant increase in the levels of glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the hippocampus of mice compared with the control. An increased level of glycine after bilobalide treatment was also detected in the striatum. In the cortex, bilobalide increased the GABA level, whereas it decreased the level of aspartate. These changes in the levels of various amino acids may be involved in the broad spectrum of pharmacological activities of the extract of Ginkgo biloba on the central nervous system.  相似文献   

14.
Cysteine sulfinate (CSA) carboxylyase, the enzyme which synthesizes taurine through hypotaurine, shows a higher activity in the inner plexiform and nuclear layer of adult chick retina compared to the outer plexiform and nuclear layers whereas the outer segments of photoreceptors do not show any activity of this enzyme. These observations suggest an endogenous synthesis of taurine preferentially in certain layers of retina. Therefore, taurine fulfills one more criteria which is required by a substance to be accepted as a neurotransmitter in an organ. Studies on the distribution of CSA-carboxylyase in the visual pathway and other brain areas show a very high activity of this enzyme in optic tectum followed by cerebral cortex, cerebellum, retina, lateral geniculate body and optic nerve, taken with chiasma and tract in decreasing order. On the other hand, analysis of the free amino acid pool reveals a very high content of taurine in retina as compared to optic tectum. Cysteine sulfinate carboxylyase activity and the content of taurine therefore do not seem to bear a good correlation and other mechanisms of release, uptake and degradation might be involved in regulating the taurine content in these tissues.  相似文献   

15.
Total pool of glutamate, glutamine and GABA in the hemispheres increases during postnatal life of rats, the increase being due to that in free and bound forms of amino acids. In the cerebellum of 1-day rats, the content of free and bound glu, gln asp, GABA, bound ala and free gly is lower, whereas the level of free glu and ala, bound gly is higher than in mature animals. To the end of the 1st week, total amino acid content decreases, except GABA, which is increased. Aminon acid content begins to increase at the 21th and 28th days of postnatal life.  相似文献   

16.
Taurine, a multifunctional amino acid prevalent in developing nervous tissues, regulates the number of rod photoreceptors in developing postnatal rodent retina. In this issue of Neuron, Young and Cepko show that taurine acts via GlyRalpha2 subunit-containing glycine receptors expressed by retinal progenitor cells at birth.  相似文献   

17.
目的 改良测定大鼠脑组织氨基酸类神经递质的反相高效液相色谱荧光法.方法 改良使用磷酸盐-甲醇-乙腈作为流动相,反相高效液相色谱洗脱,高丝氨酸作为内标,邻苯二甲醛柱前衍生和荧光检测器,检测大鼠大脑皮质、海马、纹状体、中脑、小脑和下丘脑6个脑区中天冬氨酸(Asp)、谷氨酸(Glu)、谷氨酰胺(G1n)、甘氨酸(Gly)、γ-氨基丁酸(GABA)和牛磺酸(Tau)6种氨基酸类神经递质含量.结果 6种氨基酸在20 min内洗脱完全,分离效果良好;在6.25~ 400 μmol/L浓度范围有较好的线性关系,其相关系数不低于0.99;6种氨基酸日内试验精密度范围为1.38% ~7.59%;日间试验精密度为2.7%~8.68%;6种氨基酸回收率不低于80%.结论 改良后的反相高效液相色谱荧光法灵敏度较高、重复性好,能有效分离检测大鼠脑组织分区中氨基酸类神经递质含量.  相似文献   

18.
1. Taurine levels have been determined in eight rat organs. 2. During postnatal growth the taurine content in retina, heart, small intestine, spleen and lung increases with advancing age, although adult values are not reached at the same time. 3. In contrast the taurine content decreases with age in brain cortex, liver and kidney. 4. The taurine in subcellular fractions of adult, 20-day-old and 5-day-old rat tissues exists predominantly in the cytosol of the cell. Taurine content in particulate fractions shows marked variations during development in the different organs. 5. Taurine distribution in the subcellular fractions suggests that some of the cellular taurine in the tissues is not freely mobile in cytosol.  相似文献   

19.
1. Glutaminase activity was evaluated in the chick cerebral hemispheres, optic lobes and cerebellum between the 1st and 30th day of postnatal growth. 2. Glutaminase activity is higher in the cerebral hemispheres than in the optic lobes and is lowest in the cerebellum. 3. It seems to be inversely related to the magnitude of the variations of glutamine concentration in the three areas. 4. No direct relation exists between enzyme activity and glutamate concentration in the three tissues.  相似文献   

20.
Changes in the amounts of proteins and amino acids in synaptosomes and whole tissue from the olfactory bulb and cerebral cortex of rats were measured during the period 5-25 days postnatal. The amount of neurotransmitter type amino acids (such as GABA, glutamate and aspartate) associated with synaptosomes obtained from 1g of brain tissue increased dramatically with the age of the animals, whereas non-transmitter type amino acids (such as serine and glutamine) showed relatively little change. The results were in harmony with an earlier cessation of synaptogenesis in the olfactory bulb than in the cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号