首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-alpha (LXRalpha) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRalpha mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRalpha mRNA but is associated with decreased insulin sensitivity.  相似文献   

2.
Hepatic alcohol dehydrogenase (ADH) activity is higher in female than in male rats. Although sex steroids, thyroid, and growth hormone (GH) have been shown to regulate hepatic ADH, the mechanism(s) for sexual dimorphic expression is unclear. We tested the possibility that the GH secretory pattern determined differential expression of ADH. Gonadectomized and hypophysectomized male and female rats were examined. Hepatic ADH activity was 2.1-fold greater in females. Because protein and mRNA content were also 1.7- and 2.4-fold greater, results indicated that activity differences were due to pretranslational mechanisms. Estradiol increased ADH selectively in males, and testosterone selectively decreased activity and mRNA levels in females. Effect of sex steroids on ADH was lost after hypophysectomy; infusion of GH in males increased ADH to basal female levels, supporting a role of the pituitary-liver axis. However, GH and L-thyroxine (T4) replacements alone in hypophysectomized rats did not restore dimorphic differences for either ADH activity or mRNA levels. On the other hand, T4 in combination with intermittent administration of GH reduced ADH activity and mRNA to basal male values, whereas T4 plus GH infusion replicated female levels. These results indicate that the intermittent male pattern of GH secretion combined with T4 is the principal determinant of low ADH activity in male liver.  相似文献   

3.
The role of androgen in the sexual dimorphism in hypothalamic growth hormone (GH)-releasing hormone (GHRH) and somatostatin (SS) gene expression was examined in rats. In the first study, the SS and GHRH mRNA levels were measured in both male and female rats at 4, 6, 8, and 10 weeks of age. A significant sex-related difference in the SS and GHRH mRNA levels was observed after 8 weeks of age, when sexual maturation is fully attained. Male rats had higher SS and GHRH mRNA levels than the female rats. In the second study, adult ovariectomized rats received daily injection of dihydrotestosterone (DHT), nonaromatizable testosterone, at a dose of 2 mg/rat for 21 days. The DHT treatment masculinized the GH secretory pattern, which was indistinguishable from that of intact male rats, and simultaneously augmented the SS and GHRH mRNA levels. The DHT treatment of ovariectomized rats after hypophysectomy significantly raised the level of SS mRNA, but not that of GHRH mRNA compared to the control animals. These findings suggest that the activation of the SS gene expression through androgen receptor plays an important role in the maintenance of sexual dimorphism in GH secretion in rats.  相似文献   

4.
The hormonal regulation of rat renal cytochrome P450s, P450 4A2 (K-5) and K-2, was investigated. The level of P450 4A2 in male rats was five times that in female rats and accounted for some 90% of total cytochrome P450, measured photometrically. Lauric acid omega- and (omega-1)-hydroxylation activities of renal microsomes of male rats were also higher than those of female rats. The sex differences in lauric acid hydroxylation activity seemed to arise from the differences in P450 4A2 concentrations, according to an immunochemical study. P450 K-2 was a female-dominant form in rat kidneys. The level of P450 K-2 in renal microsomes of male rats was one-tenth that of P450 4A2. Castration of male rats decreased the levels of P450 4A2 and treatment of castrated male rats with testosterone reversed the decrease. The castration of male rats decreased the lauric acid hydroxylation of the renal microsomes to the level of female rats. The administration of testosterone to castrated male rats reversed the decrease. Hypophysectomy of male rats decreased the level of P450 4A2 and the administration of growth hormone reversed the decrease when intermittent injections mimicking the male secretory pattern were given, although continuous administration mimicking the female secretory pattern did not. Castration of male rats did not affect the level of P450 K-2, but testosterone decreased its level. Hypophysectomy of male rats increased the level of P450 K-2 and growth hormone decreased its level in hypophysectomized rats. These results suggested that the expression of P450 4A2 was regulated by androgen or growth hormone and regulation of P450 4A2 was different from that of P450 K-2. To explore the regulation of renal cytochrome P450 further, testosterone was given to control (intact) or hypophysectomized adult female rats. P450 4A2 was induced in the kidneys of both control and hypophysectomized female rats to close to the level of male rats. Thus, P450 4A2 was directly regulated by testosterone as well as growth hormone, and the regulation of the male-dominant form in rat kidneys was different from that of the male-specific form in the rat liver, which is regulated mostly by growth hormone.  相似文献   

5.
The hormonal regulation of the sexually differentiated cytochrome P-450 isozyme which catalyzes 16 alpha-hydroxylation of testosterone and 4-androstene-3,17-dione in male rat liver (P-450(16) alpha) was investigated. Estradiol valerate injection of male rats caused a decrease in P-450(16) alpha levels to almost the female level, while methyltrienolone injection had the reverse effect in female animals. Hypophysectomy abolished the sex difference in P-450(16) alpha levels. Human growth hormone infusion into male rats, mimicking the female pattern of growth hormone secretion, caused a feminization of P-450(16) alpha levels. The same effect was also seen in hypophysectomized rats of both sexes. In contrast, a different administration schedule involving 12 h injections of human growth hormone, mimicking the male pattern of growth hormone secretion, caused a masculinization of P-450(16) alpha levels in hypophysectomized rats, at a daily dose which causes feminization when given by infusion. Thus, the level of expression of P-450(16) alpha in the liver is dependent on the temporal pattern of blood growth hormone levels. While infusion of rat growth hormone into male rats also feminized the P-450(16) alpha levels, infusion of ovine prolactin had no effect. Ontogenic studies showed that the developmental pattern of P-450(16) alpha expression in the liver coincided with the known pattern of development of the sexual differentiation of hepatic steroid 16 alpha-hydroxylase activity and of the diurnal pattern of growth hormone secretion.  相似文献   

6.
Steroid sulfatase activity was quantified in liver microsomes from hypophysectomized adult female rats treated with estradiol and continuous or intermittent human growth hormone (hGH). Hypophysectomy clearly enhanced sulfatase activity as compared to intact female rats. Normal female values were completely restored by continuous infusion of hGH (1.4 i.u./kg/day). Neither the same dose of hGH given as two daily injections nor estrogen replacement therapy had any effect. It is concluded that liver microsome sulfatase activity in the non-pregnant rat is regulated by the sexually dimorphic secretory pattern of GH.  相似文献   

7.
8.
Carbonic anhydrase III (CAIII) occurs in male rat liver at concentrations twenty times those in the female, and is sensitive to the pattern of growth hormone (GH) release. Males release GH episodically and have high concentrations of CAIII; females produce GH in a more continuous fashion and have lower CAIII levels. In normal female rats, the endogenous GH secretory pattern was masculinized, either by regular injections of GH-releasing factor (GRF) or by intermittent infusions of somatostatin (90 min on/90 min off). Both treatments induced regular GH pulses and stimulated growth, but only intermittent somatostatin infusions raised CAIII levels (controls, 1.5 +/- 0.5; somatostatin-treated, 9.0 +/- 2.9 micrograms/mg; means +/- S.D.). GRF pulses (4 micrograms every 4 h) did not however raise CAIII levels (controls 1.8 +/- 0.5; GRF-treated 1.4 +/- 0.4 micrograms/mg). Surprisingly, hepatic CAIII is also sexually dimorphic (males, 18.8 +/- 3; females, 2.22 +/- 0.4 micrograms/mg) in a GH-deficient dwarf rat strain which has low plasma GH levels without 3-hourly GH peaks. Intermittent somatostatin infusions in female dwarf rats partially masculinized hepatic CAIII, an effect reduced by co-infusion with GRF. This CAIII response was not secondary to growth induction, since neither somatostatin nor GRF stimulated growth in dwarf rats, and pulses of exogenous GH stimulated growth in female dwarfs without masculinizing CAIII levels. Furthermore, continuous GH infusion in male dwarf rats partially feminized hepatic CAIII levels (to 9.1 +/- 2.4 micrograms/mg), whereas infusions of insulin-like growth factor-1, which induced the same body weight gain, did not affect hepatic CAIII (20.8 +/- 6 micrograms/mg). These results show that hepatic CAIII expression is highly sensitive to the endogenous GH secretory pattern, independent of growth. They also implicate the low basal GH levels between pulses, rather than the peak GH levels, as the primary determinant of the sexually dimorphic hepatic CAIII expression in the rat.  相似文献   

9.
E Eriksson  J O Jansson 《Life sciences》1985,37(13):1241-1248
The secretory pattern of growth hormone (GH) in female rats differs from that in males with respect to e.g. the inter-peak baseline levels being higher in females. In the present study the influence of sex steroids on plasma GH levels was investigated in male rats under various conditions. Administration of estradiol, but not testosterone, was found to increase GH release in rats with suppressed levels induced by exposure to swimming stress or by treatment with the monoamine depleting agent reserpine. In line with previous studies, administration of estradiol was found to increase also inter-peak GH levels in adult male rats; i.e. to cause a feminization of the secretory pattern. In stressed and in reserpinized animals as well as in normal male rats, the effect of estradiol is similar to that earlier demonstrated for somatostatin antiserum, and hence it is suggested that estradiol may act antagonistic to the GH inhibiting factor.  相似文献   

10.
11.
The regulatory mechanism of cytosolic sulfation of T3 has been studied in rat liver. Sulfation of T3 is sexually differentiated in adult rats of Sprague-Dawley (SD), Fisher 344, and ACI strains. In SD strain, the male animals showed 4 times higher sulfating activity than did the females. The specific activity was decreased by hypophysectomy of male adult rats, but was not affected in the females. Thus, the sex-difference was abolished in the hypophysectomized condition. Supplement of human GH intermittently twice daily for 7 days, to mimic the male secretory pattern, increased T3 sulfating activity in both sexes of hypophysectomized rats, whereas continuous infusion to mimic a female secretory pattern had no appreciable effect. Cytosolic sulfation of T3 was decreased by 25 to 30% by thyroidectomy or propylthiouracil treatment of male adult rats, and was restored by the supplementation of T3 (50 micrograms/kg daily for 7 days) to thyroidectomized rats. Administration of T3 in hypophysectomized rats almost completely restored the sulfating activity in the males and increased the activity in the females. Cytosolic T3 sulfation was inhibited by the addition of known inhibitors of phenol sulfotransferase, pentachlorophenol or 2,6-dichloro-4-nitrophenol. These results indicate a role of pituitary GH in hepatic sulfation of thyroid hormones in rats. The data obtained also raise the possibility that GH may modify the effect of thyroid hormones on the pituitary by a feed-back mechanism through changing the level of a sex-dominant phenol sulfotransferase(s) in rat livers. T3 was also sulfated in hepatic cytosols of mouse, hamster, rabbit, dog, monkey, and human.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

13.
14.
Cadmium is an endocrine disruptor that has been shown to induce chronotoxic effects. The present study was designed to evaluate the possible cadmium effects on the daily secretory pattern of adrenocorticotropin hormone (ACTH), growth hormone (GH), and thyroid-stimulating hormone (TSH) in adult male Sprague-Dawley rats. For this purpose, animals were treated with cadmium at two different doses [25 and 50 mg/l cadmium chloride (CdCl2)] in the drinking water for 30 days. Control age-matched rats received cadmium-free water. After the treatment, rats were killed at six different time intervals throughout a 24-h cycle. Cadmium exposure modified the 24-h pattern of plasma ACTH and GH levels, as the peak of ACTH content between 12:00 and 16:00 h in controls appeared at 12:00 h in the group treated with the lowest dose used, while it appeared between 16:00 and 20:00 h in rats exposed to 50 mg/l CdCl2. In addition, the peak of GH content found at 04:00 h in controls moved to 16:00 h in rats exposed to 25 mg/l CdCl2, and the highest dose used abolished 24-h changes of GH secretion. The metal treatment did not modify ACTH secretory pattern. Exposure to cadmium also increased ACTH and TSH medium levels around the clock with both doses used. These results suggest that cadmium modifies ACTH and TSH medium levels around the clock, as well as disrupted ACTH and GH secretory pattern, thus confirming the metal chronotoxicity at pituitary level.  相似文献   

15.
Calorie restriction of young male rats increases plasma prolactin, decreases luteinizing hormone (LH) and testosterone, and disrupts their 24 h secretory pattern. To study whether this could be the consequence of stress, we examined the 24 h variations of plasma adrenocorticotropic hormone (ACTH) corticosterone, growth hormone (GH), leptin, and adrenal corticosterone. Rats were submitted to a calorie restriction equivalent to a 66% of usual intake for 4 weeks, starting on day 35 of life. Controls were kept in individual cages and allowed to eat a normal calorie regimen. Significantly lower ACTH levels were detected in calorie-restricted rats. Plasma corticosterone levels during the light phase of the daily cycle were significantly higher in calorie-restricted rats. Time-of-day variation in plasma ACTH and corticosterone levels attained significance in calorie-restricted rats only, with a maximum toward the end of the resting phase. The daily pattern of adrenal gland corticosterone mirrored that of circulating corticosterone; however, calorie restriction reduced its levels. Plasma ACTH and corticosterone correlated significantly in controls only. Calorie restriction decreased plasma GH and leptin, and it distorted 24 h rhythmicity. In a second study, plasma ACTH and corticosterone levels were measured in group-caged rats, isolated control rats, and calorie-restricted rats during the light phase of the daily cycle. Plasma ACTH of calorie-restricted rats was lower, and plasma corticosterone was higher, compared with isolated or group-caged controls. The changes in the secretory pattern of hormones hereby reported may be part of the neuroendocrine and metabolic mechanisms evolved to maximize survival during periods of food shortage.  相似文献   

16.
17.
Ghrelin, a novel endogenous growth hormone (GH) secretagogue, has been shown to exert very potent and specific GH-releasing activity in rats and humans. However, little is known about its GH-releasing activity and endocrine effects in domestic animals. To clarify the effect of ghrelin on GH secretion in vivo in ruminants, plasma GH responses to intra-arterial and intra-hypothalamic injections of rat ghrelin (rGhrelin) were examined in goats and cattle. The intra-arterial injection of 1 microg/kg BW of rGhrelin in ovariectomized goats failed to stimulate GH release, however, a dosage of 3 microg/kg BW significantly increased plasma GH concentrations (P<0.05). GH levels peaked at 15 min after the injection, then decreased to basal concentrations within 1 h after the injection. However, the secretory response to 3 microg/kg BW of rGhrelin was weaker than that of growth hormone-releasing hormone (GHRH) (0.25 microg/kg BW) (P<0.05). An infusion of 10 nmol of ghrelin into the medial basal hypothalamus (arcuate nucleus) significantly stimulated the release of GH in male calves (P<0.05). GH levels began to rise just after the infusions and peaked at 10 min, then decreased to the basal concentrations within 1 h after the injection. The present results show that ghrelin stimulates GH release in ruminants.  相似文献   

18.
19.
Exogenous administration of testosterone produced several metabolic tissue-specific changes in female mouse kidneys, but not in the liver. The hormone induced ornithine decarboxylase (ODC) activity, and also profoundly influenced metabolism of S-adenosylmethionine (AdoMet). Therefore, the activity of the AdoMet-synthesizing enzyme (AdoMet synthetase) and of cystathionine synthase, which commits homocysteine irreversibly to the transsulfuration pathway, were significantly increased. In contrast to the level of AdoMet in the liver the renal level of this metabolite was augmented, whereas the level of S-adenosylhomocysteine (AdoHcy) did not change. This resulted in an increase of the AdoMet/AdoHcy ratio. In testosterone-treated mice, pulse-labelled with [methyl-14C]methionine, the radioactivity recovered in the kidneys doubled, but in the liver remained the same. The rise in radioactivity recovered occurred mainly in TCA-soluble compounds and lipids, and to a smaller extent, in proteins and nucleic acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号