首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells   总被引:10,自引:0,他引:10  
Transforming growth factor-beta 1 (TGF-beta 1) has important roles in lung fibrosis and the potential to induce apoptosis in several types of cells. We previously demonstrated that apoptosis of lung epithelial cells induced by Fas ligation may be involved in the development of pulmonary fibrosis. In this study, we show that TGF-beta1 induces apoptosis of primary cultured bronchiolar epithelial cells via caspase-3 activation and down-regulation of cyclin-dependent kinase inhibitor p21. Concentrations of TGF-beta 1 that were not sufficient to induce apoptosis alone could enhance agonistic anti-Fas Ab or rFas ligand-mediated apoptosis of cultured bronchiolar epithelial cells. Soluble Fas ligand in the bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF) also induced apoptosis of cultured bronchiolar epithelial cells that was significantly attenuated by anti-TGF-beta Ab. Otherwise, BALF from patients with hypersensitivity pneumonitis (HP) could not induce apoptosis on bronchiolar epithelial cells, despite its comparable amounts of soluble Fas ligand. The concentrations of TGF-beta 1 in BALF from patients with IPF were significantly higher compared with those in BALF from patients with HP or controls. Furthermore, coincubation with the low concentration of TGF-beta 1 and HP BALF created proapoptotic effects comparable with the IPF BALF. In vivo, the administration of TGF-beta 1 could enhance Fas-mediated epithelial cell apoptosis and lung injury via caspase-3 activation in mice. Our results demonstrate a novel role of TGF-beta 1 in the pathophysiology of pulmonary fibrosis as an enhancer of Fas-mediated apoptosis of lung epithelial cells.  相似文献   

2.
We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 +/- 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH(2)F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.  相似文献   

3.
Avian H5N1 influenza virus causes a remarkably severe disease in humans, with an overall case fatality rate of greater than 50%. Human influenza A viruses induce apoptosis in infected cells, which can lead to organ dysfunction. To verify the role of H5N1-encoded NS1 in inducing apoptosis, the NS1 gene was cloned and expressed in human airway epithelial cells (NCI-H292 cells). The apoptotic events posttransfection were examined by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end-labeling assay, flow cytometric measurement of propidium iodide, annexin V staining, and Western blot analyses with antibodies specific for proapoptotic and antiapoptotic proteins. We demonstrated that the expression of H5N1 NS1 protein in NCI-H292 cells was sufficient to induce apoptotic cell death. Western blot analyses also showed that there was prominent cleavage of poly(ADP-ribose) polymerase and activation of caspase-3, caspase-7, and caspase-8 during the NS1-induced apoptosis. The results of caspase inhibitor assays further confirmed the involvement of caspase-dependent pathways in the NS1-induced apoptosis. Interestingly, the ability of H5N1 NS1 protein to induce apoptosis was much enhanced in cells pretreated with Fas ligand (the time posttransfection required to reach >30% apoptosis was reduced from 24 to 6 h). Furthermore, 24 h posttransfection, an increase in Fas ligand mRNA expression of about 5.6-fold was detected in cells transfected with H5N1 NS1. In conclusion, we demonstrated that the NS1 protein encoded by avian influenza A virus H5N1 induced apoptosis in human lung epithelial cells, mainly via the caspase-dependent pathway, which encourages further investigation into the potential for the NS1 protein to be a novel therapeutic target.  相似文献   

4.
We have previously shown that 25-hydroxycholesterol (25-OHC) treated CHO-K1 cells could be used as a model to investigate the signaling pathway of apoptosis induced by oxidized LDL in vascular cells. In the present study, we examine the execution phase of the apoptotic pathway in CHO-K1 cell death induced by 25-OHC. Oxysterol-induced apoptosis in CHO-K1 was accompanied by caspase activation and was preceded by mitochondrial cytochrome c release. The addition of a competitive caspase-3 inhibitor, Ac-DEVD-CHO, prevented 25-OHC-induced apoptotic cell death. Furthermore, immunoblot analysis showed that 25-OHC treatment induced the degradation of poly(ADP-ribose) polymerase (PARP)-a substrate for caspase 3 and a key enzyme involved in genome surveillance and DNA repair. Thus, we could demonstrate in CHO-K1 cells that 25-OHC activates the apoptotic machinery through induction of the release of cytochrome c from mitochodria into the cytosol and activation of a typical caspase cascade.  相似文献   

5.
Human cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector C (CIDEC) is a potent apoptotic inducer. Previous studies have indicated that the Fat-specific protein 27 (Fsp27), a mouse homolog of CIDEC, induces apoptosis via caspase-3, -7, and -9 and triggers the release of cytochrome c from mitochondria, which implies that the mitochondrial pathway is involved in Fsp27-induced apoptosis. In the current study, we found that CIDEC-induced apoptosis was mediated by caspase-8. The caspase inhibitor assay showed that CIDEC-induced apoptosis was dramatically reduced in the presence of the general caspase inhibitor, the caspase-3 inhibitor, and the caspase-8 inhibitor, whereas the caspase-9 inhibitor only weakly inhibited CIDEC-induced apoptosis. These results confirmed that the activation of caspase-3 and caspase-8 were involved in CIDEC-induced apoptosis. Moreover, in caspase-3- or caspase-8-deficient cells, CIDEC-induced apoptosis were dramatically decreased, which demonstrated that CIDEC-induced apoptosis might require the activation of caspase-3 and caspase-8. Because caspase-8 in general is a key effecter of death-receptor pathway and activated by Fas-Associated protein with Death Domain (FADD), we examined whether FADD was involved in CIDEC-induced apoptosis. Our results demonstrated that CIDEC-induced apoptosis was independent of FADD, suggesting that CIDEC-induced apoptosis might be in a death-receptor-independent, caspase-8-dependent manner. It was also found that the region of amino acid 168-200 in carboxyl domain of CIDEC was critical for its crucial pro-apoptotic function.  相似文献   

6.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

7.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

8.
Two subsets of human CTL have been defined based upon phenotype and function: CD4(-) CD8(-) double-negative (DN) CTL lyse susceptible targets via Fas-Fas ligand interaction and CD8(+) CTL via the granule exocytosis pathway. CD8(+) CTL, but not DN CTL, can mediate an antimicrobial activity against Mycobacterium tuberculosis-infected target cells that is dependent on cytotoxic granules that contain granulysin. We investigated the role of nuclear apoptosis for the antimicrobial effector function of CD1-restricted CTL using the caspase inhibitor N:-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. We found that DN CTL-induced target cell lysis was completely dependent on caspase activation, whereas the cytolytic activity of CD8(+) CTL was caspase independent. However, both DN and CD8(+) CTL-induced nuclear apoptosis required caspase activation. More important, the antimicrobial effector function of CD8(+) CTL was not diminished by inhibition of caspase activity. These data indicate that target cell nuclear apoptosis is not a requirement for CTL-mediated killing of intracellular M. tuberculosis.  相似文献   

9.
Staurosporine (STS) induces apoptosis in various cell lines. We report in this study that primary cultured mouse hepatocytes are less sensitive to STS compared with Jurkat cells and Huh-7 cells. In contrast to the cell lines, no apparent release of cytochrome c or loss of mitochondrial transmembrane potential was detected in primary hepatocytes undergoing STS-induced apoptosis. Caspase-3 was activated in primary hepatocytes by STS treatment, but caspase-9 and -12 were not activated, and caspase-3 activation is not dependent on caspase-8. These findings point to a novel pathway for caspase-3 activation by STS in primary hepatocytes. Pretreatment with caspase inhibitor converted STS-induced apoptosis of hepatocytes to necrotic cell death without significantly changing total cell death. Thus STS causes hepatocytes to commit to death upstream of the activation of caspases. We also demonstrated that STS dramatically sensitized primary hepatocytes to tumor necrosis factor-alpha-induced apoptosis. STS activated I kappa B kinase and nuclear factor-kappa B (NF-kappa B) nuclear translocation and DNA binding but inhibited transactivation of I kappa B-alpha, inducible nitric oxide synthase, and inhibitor of apoptosis protein-1 in hepatocytes and NF-kappa B reporter in transfected Huh-7 cells.  相似文献   

10.
In this study we demonstrate the anti-apoptotic effect of IL-12 and its underlying mechanism in CD8 T cells. The prolonged stimulation of CD8 T cells with anti-CD3 alone caused apoptosis mediated by Fas and the caspase signaling pathway. However, costimulation with IL-12 significantly prevented anti-CD3-induced apoptosis of CD8 T cells. IL-12 decreased the number of Fas ligand-positive CD8 T cells and inhibited the activation of caspase-8 and caspase-3. In addition, IL-12 up-regulated cellular FLIPs but not Bcl-2 family proteins or cellular inhibitor of apoptosis proteins. These data suggest that IL-12 provides survival signals to CD8 T cells by down-regulating Fas ligand and up-regulating cellular FLIPs, followed by inhibiting caspase activation, which implies a role for IL-12 in peripheral responses of CD8 T cells in vivo.  相似文献   

11.
Fibrillogenic human amylin elicits pancreatic beta-cell apoptosis that may contribute to development of type-2 diabetes. Here, we demonstrated that activation of a caspase cascade is necessary for induction of apoptosis by fibrillogenic amylin variants in two pancreatic beta-cell lines. Human amylin, as well as truncated 8-37human amylin, evoked sequential activation of caspases-8 and -3, and apoptosis, whereas non-beta-sheet forming and non-fibrillogenic homologs, such as [25,28,29triprolyl]human amylin, did not, implying that the beta-sheet conformer is required for human amylin-induced caspase activation. Significant inhibition of apoptosis was evoked by a selective caspase-1 inhibitor, indicating that caspase-1 is also essential for activation of the caspase cascade. Furthermore, we showed that specific jnk1 antisense oligonucleotides, which suppress phospho-JNK1 expression, effectively decreased human amylin-induced activation of c-Jun. Studies of the interplay between the caspase cascade and the JNK pathway showed that both apoptosis and caspase-3 activation were suppressed by treatment with a JNK inhibitor and by transfection of antisense jnk1 oligonucleotides or antisense-c-jun, whereas a selective inhibitor of caspases-1 and -3 prevented apoptosis but not c-Jun activation. Thus, the JNK1 activation preceded activation of caspases-1 and -3. However, selective JNK inhibition had no effect on caspase-8 activation, and selective caspase-8 inhibition only partially suppressed apoptosis and c-Jun activation, indicating that caspase-8 may partially act upstream of the JNK pathway. Our studies demonstrate a functional interaction of a caspase cascade and JNK1. Fibrillogenic amylin can evoke a JNK1-mediated apoptotic pathway, which is partially dependent and partially independent of caspase-8, and in which caspase-3 acts as a common downstream effector.  相似文献   

12.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

13.
Apoptosis plays an important role in the dysfunction of exocrine glands. Fas is a death-inducing receptor found on many types of cells including epithelial acinar cells. To elucidate the intracellular mechanism of Fas-mediated cell death in exocrine glands, an epithelial acinar cell line, SMG-C6, was studied. Caspase-1, -3, -8, and -9 activities were elevated in SMG-C6 cells after the induction of apoptosis by soluble Fas ligand (FasL). The activation of caspase-1 and -8 occurred prior to caspase-3 and -9 activation. The caspase-1 inhibitor, zYVAD-fmk, was effective in preventing cell death, whereas the caspase-3 and -8 inhibitors (ac-DEVD-CHO and ac-IETD-CHO, respectively) were not. zYVAD-fmk was able to inhibit caspase-3 activation indicating that caspase-1 is upstream to caspase-3. Furthermore, kinetic studies show that caspase-1 is an early event in the Fas apoptotic pathway. This study shows that caspase-1 participates in Fas-mediated apoptosis of epithelial cells by initiating the caspase cascade.  相似文献   

14.
Swainsonine (SW) is an indolizidine alkaloid isolated from a number of poisonous plants. We have previously reported that SW inhibited luteal cell progesterone production by inducing caprine luteal cell apoptosis in vitro; however, the molecular mechanism of this phenomenon remains unclear. In this study, SW‐treated luteal cells showed apoptosis characteristics, including nuclear fragmentation, DNA ladder formation, and phosphatidylserine externalization. Further studies showed that SW activated caspase‐9 and caspase‐3, which subsequently cleaved poly(ADP‐ribose) polymerase. SW also increased in Bax/BcL‐2 ratios, promoted Bax translocation from the cytosol to mitochondria, and triggered the release of cytochrome c from mitochondria into the cytoplasm. However, Fas and Fas ligand induction or caspase‐8 activity did not appear any significant changes. Additional analysis also showed that pan‐caspase inhibitor, caspase‐9 inhibitor, or caspase‐3 inhibitor almost completely protected the cells from SW‐induced apoptosis, but not caspase‐8 inhibitor. Overall, these data demonstrated that SW induced luteal cells apoptosis through a mitochondrial‐mediated caspase‐dependent pathway.  相似文献   

15.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

16.
Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.  相似文献   

17.
Sendai virus (SV) infection and replication lead to a strong cytopathic effect with subsequent death of host cells. We now show that SV infection triggers an apoptotic program in target cells. Incubation of infected cells with the peptide inhibitor z-VAD-fmk abrogated SV-induced apoptosis, indicating that proteases of the caspase family were involved. Moreover, proteolytic activation of two distinct caspases, CPP32/caspase-3 and, as shown for the first time in virus-infected cells, FLICE/caspase-8, could be detected. So far, activation of FLICE/caspase-8 has been described in apoptosis triggered by death receptors, including CD95 and tumor necrosis factor (TNF)-R1. In contrast, we could show that SV-induced apoptosis did not require TNF or CD95 ligand. We further found that apoptosis of infected cells did not influence the maturation and budding of SV progeny. In conclusion, SV-induced cell injury is mediated by CD95- and TNF-R1-independent activation of caspases, leading to the death of host cells without impairment of the viral life cycle.  相似文献   

18.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

19.
Spontaneous or therapeutic induction of T cell apoptosis plays a critical role in establishing transplantation tolerance and maintaining remission of autoimmune diseases. We investigated the mechanisms of apoptosis induced by Chinese and Western antirheumatic drugs (ARDs) in human T cells. We found that hydroxychloroquine, Tripterygium wilfordii hook F, and tetrandrine (Tet), but not methotrexate, at therapeutic concentrations can cause T cell death. In addition, Tet selectively killed T cells, especially activated T cells. Although ARD-induced cytotoxicity was mediated through apoptotic mechanisms, Fas/Fas ligand interaction was not required. We further demonstrated that the processes of phosphatidylserine externalization and DNA damage along the ARD-induced T cell apoptotic pathway could operate independently, and that selective inhibition of DNA damage by caspase inhibitors did not prevent T cells from undergoing cell death. Moreover, we found that Tet- and Tripterygium wilfordii hook F-induced T cell DNA damage required caspase-3 activity, and hydroxychloroquine-induced T cell DNA damage was mediated through a caspase-3- and caspase-8-independent, but Z-Asp-Glu-Val-Asp-fluomethyl ketone-sensitive, signaling pathway. Finally, the observation that ARD-induced activation of caspase-3 in both Fas-sensitive and Fas-resistant Jurkat T cells indicates that Fas/Fas ligand interaction plays no role in ARD-induced T cell apoptosis. Our observations provide new information about the complex apoptotic mechanisms of ARDs, and have implications for combining Western and Chinese ARDs that have different immunomodulatory mechanisms in the therapy of autoimmune diseases and transplantation rejection.  相似文献   

20.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号