首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang YF  Gong KZ  Zhang ZG 《生理学报》2003,55(4):454-458
建立培养乳鼠心肌细胞的缺氧/复氧(A/R)损伤模型和缺氧预处理(APC)模型,以细胞存活率、细胞内超氧化物趋化酶(SOD)活性、丙二醛(MDA)含量、培养上清液乳酸脱氢酶(LDH)活性作为反映心肌细胞损伤的指标。采用细胞外信号调节蛋白激酶(ERK1/2)抑制剂PD98059及丝裂素活化蛋白激酶p38α/β(p38α/β)阻滞剂SB203580干预模型,并以胶内原位磷酸化法测定ERK1/2和p38活性,借以探讨ERK1/2和p38α/β在缺氧预处理保护机制中的作用。结果表明:(1)在APC组,于预处理的缺氧时相给予PD98059,可以完全消除APC的延迟保护作用;在A/R组的缺氧时相加入PD98059对细胞损伤无影响;(2)在APC组的预处理缺氧时相给予p38α/β抑制剂SB203580并不能消除APC的保护作用,而在A/R组的持续缺氧时相给予SB203580则可显著减轻缺氧对细胞的损伤;(3)ERK1/2和p38总活性测定表明,缺氧可激活ERK1/2和p38,它们的活性在缺氧后4h时达到高峰,而经过APC处理后,两者活性高峰提前于缺氧后3h时出现,且峰值显著降低。上述结果提示,预处理过程中ERK1/2的激活可能是缺氧预处理延迟保护机制中细胞信号传递的重要环节,预处理阶段p38α/β的活化不参与APC诱导的延迟保护信号传递过程,p38的过度激活可能是缺氧/复氧损伤过程中的一个致损伤参与因素,而预处理抑制随后持续缺氧阶段p38的过度激活可能是其保护机制的一个环节。  相似文献   

2.
The MAPK family member p38 is activated in the heart after ischemia-reperfusion (I/R) injury. However, the cardioprotective vs. proapoptotic effects associated with p38 activation in the heart after I/R injury remain unresolved. Another issue to consider is that the majority of past studies have employed the rodent as a model for assessing p38's role in cardiac injury vs. protection, while the potential regulatory role in a large animal model is even more uncertain. Here we performed a parallel study in the mouse and pig to directly compare the extent of cardiac injury after I/R at baseline or with the selective p38 inhibitor SB-239063. Infusion of SB-239063 5 min before ischemia in the mouse prevented ischemia-induced p38 activation, resulting in a 25% reduction of infarct size compared with vehicle-treated animals (27.9 +/- 2.9% vs. 37.5 +/- 2.7%). In the pig, SB-239063 similarly inhibited myocardial p38 activation, but there was no corresponding effect on the degree of infarction injury (43.6 +/- 4.0% vs. 41.4 +/- 4.3%). These data suggest a difference in myocardial responsiveness to I/R between the small animal mouse model and the large animal pig model, such that p38 activation in the mouse contributes to acute cellular injury and death, while the same activation in pig has no causative effect on these parameters.  相似文献   

3.
p38 MAPK is activated during heart diseases that might associate with myocardial damage and deterioration of cardiac function. In a rat model of myocardial injury, we have investigated cardioprotective effects of the inhibition of p38 MAPK using a novel, orally available p38alpha MAPK inhibitor. Rats were treated with N(omega)-nitro-l-arginine methyl ester (l-NAME, 40 mg.kg(-1).day(-1)) in drinking water plus 1% salt for 14 days and ANG II (0.5 mg.kg(-1).day(-1)) for 3 days. A selective p38alpha MAPK inhibitor, SD-282 (60 mg/kg), was administrated orally, twice a day for 4 days, starting 1 day before ANG II administration. The cardioprotective effects of p38alpha MAPK inhibition were evaluated by improvement of cardiac function, reduction of inflammatory cell infiltration, and cardiomyocyte apoptosis. SD-282 significantly improved cardiac function indicated by increasing stroke volume, cardiac output, ejection fraction, and stroke work and significantly decreasing arterial elastance. SD-282 also significantly reduced macrophage infiltration as judged by reduction of a specific marker, ED-1-positive staining cells (P < 0.05) in the myocardium. Furthermore, cardiomyocyte apoptosis as indicated by caspase-3 immunohistochemical staining was abolished by SD-282, and this effect may contribute to the reduction of myocardial damage evaluated by imaging analysis (P < 0.05 in both cases). Data suggest that p38alpha MAPK may play a critical role in the pathogenesis of cardiac dysfunction. Inhibition of p38alpha MAPK may be used as a novel cardioprotective strategy in attenuation of inflammatory response and deterioration of cardiac function that occurs in acute cardiovascular disease such as myocardial infarction.  相似文献   

4.
缺血预处理对大鼠肺缺血/再灌注损伤的保护作用   总被引:6,自引:0,他引:6  
目的 :观察缺血预处理 (IPC)对大鼠肺缺血 /再灌注 (I/R)损伤的保护作用 ,并初步探讨其作用机制。方法 :建立离体大鼠肺灌流模型 ,36只wistar大鼠随机分为对照组、I/R组和IPC组 ,处理完毕后分别测定平均肺动脉压(MPAP)、肺组织湿 /干重比、支气管肺泡灌洗液中肺表面活性物质磷脂及表面张力改变 ,肺组织标本送电镜检查。结果 :①电镜下观察IPC组肺损伤明显减轻。②肺组织湿 /干重比值IPC组为 4.41± 0 .2 4,显著低于I/R组 ,但仍高于缺血前 (P <0 .0 1) ;③IPC组大鼠缺血 1h后MPAP为 ( 1.88± 0 .2 9)kPa ,明显低于I/R组 (P <0 .0 1) ;④IPC组支气管肺泡灌洗液中总磷脂为 ( 2 33 .42± 14.0 5 ) μg/kg ,大聚体为 ( 10 5 .39± 6 .17) μg/kg ,与I/R组相比显著增高 ,但低于对照组 (P <0 .0 1) ,三组之间小聚体含量没有显著差异 ;⑤IPC组表面张力为 ( 36 .88± 3.49)mN/m ,显著低于I/R组 ,与对照组相比则无显著性差异 (P >0 .0 5 )。结论 :缺血预处理对大鼠肺I/R损伤有保护作用 ,保护机制可能与促进肺表面活性物质 (PS)磷脂分泌、改善PS组成 ,从而提高PS功能有关。  相似文献   

5.
The p38alpha/beta mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38alpha/beta pathway scaffold protein JLP and, via JLP, p38alpha/beta itself. We report that Cdo also interacts with Bnip-2, a protein that binds the small guanosine triphosphatase (GTPase) Cdc42 and a negative regulator of Cdc42, Cdc42 GTPase-activating protein (GAP). Moreover, Bnip-2 and JLP are brought together through mutual interaction with Cdo. Gain- and loss-of-function experiments with myoblasts indicate that the Cdo-Bnip-2 interaction stimulates Cdc42 activity, which in turn promotes p38alpha/beta activity and cell differentiation. These results reveal a previously unknown linkage between a cell surface receptor and downstream modulation of Cdc42 activity. Furthermore, interaction with multiple scaffold-type proteins is a distinctive mode of cell surface receptor signaling and provides one mechanism for specificity of p38alpha/beta activation during cell differentiation.  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) are inactivated via dephosphorylation of either the threonine or tyrosine residue or both in the P-loop catalyzed by protein phosphatases which include serine/threonine phosphatases, tyrosine phosphatases, and dual specificity phosphatases. Nine members of the dual specificity phosphatases specific for MAPKs, termed MKPs, have been reported. Each member has its own substrate specificity, tissue distribution, and subcellular localization. In this study, we have cloned and characterized a novel MKP, designated MKP-7. MKP-7 is most similar to hVH5, a member of previously known MKPs, in the primary structure. MKP-7 is predominantly localized in the cytoplasm when expressed in cultured cells, whereas hVH5 is both in the nucleus and the cytoplasm. MKP-7 binds to and inactivates p38 MAPK and JNK/SAPK, but not ERK. Furthermore, we have found that MKPs have the substrate specificity toward the isoforms of the p38 family (alpha, beta, gamma, and delta). MKP-7 binds to and inactivates p38 alpha and -beta, but not gamma or delta. MKP-5 and CL100/MKP-1 also bind to p38 alpha and -beta, but not gamma or delta. Finally, we propose a tentative classification of MKPs based on the sequence characteristics of their MAPK-docking site.  相似文献   

7.
8.
While investigating the ability of p38 MAPK to regulate cytarabine (Ara C)-dependent differentiation of erythroleukemia K562 cells, we observed effects that indicated that the imidazoline class of p38 MAPK inhibitors prevented nucleoside transport. Incubation of K562 cells with SB203580, SB203580-iodo, or SB202474, an analogue of SB203580 that does not inhibit p38 MAPK activity, inhibited the uptake of [3H]Ara C or [3H]uridine and the differentiation of K562 cells. Consistent with the effects of these compounds on the nitrobenzylthioinosine (NBMPR)-sensitive equilibrative nucleoside transporter (ENT1), incubation with SB203580 or SB203580-iodo eliminated the binding of [3H]NBMPR to K562 cells or membranes isolated from human erythrocytes. Furthermore, using a uridine-dependent cell type (G9c), we observed that SB203580 or SB203580-iodo efficiently inhibited the salvage synthesis of pyrimidine nucleotides in vivo. Thus these studies demonstrate that the NBMPR-sensitive equilibrative nucleoside transporters are novel and unexpected targets for the p38 MAPK inhibitors at concentrations typically used to inhibit protein kinases.  相似文献   

9.
Wang Y  Liu L  Zhou D 《Radiation research》2011,176(6):743-752
Exposure to a moderate or high total-body dose of radiation induces not only acute bone marrow suppression but also residual (or long-term) bone marrow injury. The induction of residual bone marrow injury is primarily attributed to the induction of hematopoietic cell senescence by ionizing radiation. However, the mechanisms underlying radiation-induced hematopoietic cell senescence are not known and thus were investigated in the present study. Using a well-established long-term bone marrow cell culture system, we found that radiation induced hematopoietic cell senescence at least in part via activation of p38 mitogen-activated protein kinase (p38). This suggestion is supported by the finding that exposure to radiation selectively activated p38 in bone marrow hematopoietic cells. The activation was associated with a significant reduction in hematopoietic cell clonogenic function, an increased expression of p16(INK4a) (p16), and an elevated senescence-associated β-galactosidase (SA-β-gal) activity. All these changes were attenuated by p38 inhibition with a specific p38 inhibitor, SB203580 (SB). Selective activation of p38 was also observed in bone marrow hematopoietic stem cells (HSCs) after mice were exposed to a sublethal total-body dose (6.5 Gy) of radiation. Treatment of the irradiated mice with SB after total-body irradiation (TBI) increased the frequencies of HSCs and hematopoietic progenitor cells (HPCs) in their bone marrow and the clonogenic functions of the irradiated HSCs and HPCs. These findings suggest that activation of p38 plays a role in mediating radiation-induced hematopoietic cell senescence and residual bone marrow suppression.  相似文献   

10.

Background  

These studies investigate the role of mitoKATP channels, protein kinase C (PKC) and Mitogen activated protein kinase (p38MAPK) on the cardioprotection of ischemic (IP) and pharmacological preconditioning (PP) of the human myocardium and their sequence of activation.  相似文献   

11.
MAPK p38 alpha is dispensable for lymphocyte development and proliferation   总被引:4,自引:0,他引:4  
Signals mediated by the p38alpha MAPK have been implicated in many processes required for the development and effector functions of innate and adaptive immune responses. As mice deficient in p38alpha exhibit embryonic lethality, most analyses of p38alpha function in lymphocytes have relied on the use of pharmacologic inhibitors and dominant-negative or constitutively active transgenes. In this study, we have generated a panel of low passage p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) embryonic stem (ES) cells through the intercrossing of p38alpha(+/-) mice. These ES cells were used to generate chimeric mice by RAG-deficient blastocyst complementation, with the lymphocytes in these mice being derived entirely from the ES cells. Surprisingly, B and T cell development were indistinguishable when comparing chimeric mice generated with p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) ES cell lines. Moreover, proliferation of p38alpha(-/-) B and T cells in response to Ag receptor and non-Ag receptor stimuli was intact. Thus, p38alpha is not an essential component of signaling pathways required for robust B and T lymphocyte developmental, nor is p38alpha essential for the proliferation of mature B and T cells.  相似文献   

12.
Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET), reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence, hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-alpha, and oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.  相似文献   

13.
Tumor conditioned medium (CM) has been widely used to stimulate endothelial cells to form capillary-like structures in in vitro angiogenesis models. We report herein the effect of HT1080 and A549 CM after they were mixed with microvascular endothelial cells medium-2 (EGM-2) on angiogenesis in human umbilical vein endothelial cells (HUVECs). Both HT1080 and A549 CM decreased HUVEC proliferation, to different extents. While A549 CM significantly increased capillary-like structure formation in a co-culture system, no effect of HT1080 was apparent. Inhibition of p38 mitogen-activated protein kinase (MAPK) blocked both basal and A549 CM induced capillary-like structure formation, but inhibition of extracellular signal-regulated kinases (ERK) and that of c-Jun N-terminal protein kinases (JNK) MAPK had no such effect. Activation of ERK MAPK was inhibited by both CMs, whereas p38 MAPK was inactivated by HT1080 and activated by A549 CM and a control. Neither CM had an effect on JNK MAPK. The results suggest that p38 MAPK played a critical role in capillary-like structure formation in the co-culture, partly via promotion of apoptosis in HUVECs.  相似文献   

14.
MAPK activities, including JNK, p38, and ERK, are markedly enhanced after ischemia in vivo and chemical anoxia in vitro. The relative extent of JNK, p38, or ERK activation has been proposed to determine cell fate after injury. A mouse model was established in which prior exposure to ischemia protected against a second ischemic insult imposed 8 or 15 days later. In contrast to what was observed after 30 min of bilateral ischemia, when a second period of ischemia of 30- or 35-min duration was imposed 8 days later, there was no subsequent increase in plasma creatinine, decrease in glomerular filtration rate, or increase in fractional excretion of sodium. A shorter period of prior ischemia (15 min) was partially protective against subsequent ischemic injury 8 days later. Unilateral ischemia was also protective against a subsequent ischemic insult to the same kidney, revealing that systemic uremia is not necessary for protection. The ischemia-related activation of JNK and p38 and outer medullary vascular congestion were markedly mitigated by prior exposure to ischemia, whereas preconditioning had no effect on post-ischemic activation of ERK1/2. The phosphorylation of MKK7, MKK4, and MKK3/6, upstream activators of JNK and p38, was markedly reduced by ischemic preconditioning, whereas the post-ischemic phosphorylation of MEK1/2, the upstream activator of ERK1/2, was unaffected by preconditioning. Pre- and post-ischemic HSP-25 levels were much higher in the preconditioned kidney. In summary, post-ischemic JNK and p38 (but not ERK1/2) activation was markedly reduced in a model of kidney ischemic preconditioning that was established in the mouse. The reduction in JNK and p38 activation can be accounted for by reduced activation of upstream MAPK kinases. The post-ischemic activation patterns of MAPKs may explain the remarkable protection against ischemic injury observed in this model.  相似文献   

15.
In this paper, we report that SB202190 alone, a specific inhibitor of p38(MAPK), induces low density lipoprotein (LDL) receptor expression (6-8-fold) in a sterol-sensitive manner in HepG2 cells. Consistent with this finding, selective activation of the p38(MAPK) signaling pathway by expression of MKK6b(E), a constitutive activator of p38(MAPK), significantly reduced LDL receptor promoter activity. Expression of the p38(MAPK) alpha-isoform had a similar effect, whereas expression of the p38(MAPK) betaII-isoform had no significant effect on LDL receptor promoter activity. SB202190-dependent increase in LDL receptor expression was accompanied by induction of p42/44(MAPK), and inhibition of this pathway completely prevented SB202190-induced LDL receptor expression, suggesting that p38(MAPK) negatively regulates the p42/44(MAPK) cascade and the responses mediated by this kinase. Cross-talk between these kinases appears to be one-way because modulation of p42/44(MAPK) activity did not affect p38(MAPK) activation by a variety of stress inducers. Taken together, these findings reveal a hitherto unrecognized one-way communication that exists between p38(MAPK) and p42/44(MAPK) and provide the first evidence that through the p42/44(MAPK) signaling cascade, the p38(MAPK) alpha-isoform negatively regulates LDL receptor expression, thus representing a novel mechanism of fine tuning cellular levels of cholesterol in response to a diverse set of environmental cues.  相似文献   

16.
This study examined the effects of ischemic preconditioning (IPC), allopurinol (Allo) or a combination of both on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). I/R increased the serum aminotransferase activity and the level of mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutathione level. Either IPC or Allo alone attenuated these changes with Allo+IPC having a synergistic effect. Allo increased the serum nitrite and nitrate level after brief ischemia. The significant peroxide production observed after 10 min of reperfusion after sustained ischemia was markedly attenuated by Allo+IPC. The mitochondria isolated after I/R were swollen, which was reduced by Allo+IPC. At the end of ischemia, the hepatic ATP level was lower and there was significant xanthine accumulation, which was attenuated by Allo+IPC. These results suggest that IPC and Allo act synergistically to protect cells against mitochondrial injury and preserve the hepatic energy metabolism during hepatic I/R.  相似文献   

17.
目的:探讨缺血预处理对肢体缺血/再灌注时肾损伤的保护作用。方法:复制家兔肢体缺血/再灌注(I/R)损伤模型,观察肢体缺血4h再灌注4h后以及应用缺血预处理干预对肾损伤的影响。分别从右颈外静脉、肾动脉和肾静脉取血,代表外周血以及入、出肾血,观察外周血超氧化物歧化酶(SOD)、丙二醛(MDA)及尿素氮(BUN);同时测定入肾血和出肾血NO、SOD、MDA和肾组织SOD、MDA、诱导型一氧化氮合酶(iNOS)以及缺血预处理对上述指标的影响。结果:与对照组比较,缺血再灌组松夹后4h外周血、入、出肾血及肾组织SOD活性明显降低,MDA含量增高(P〈0.01);外周血BUN以及入、出肾血NO和肾组织iNOS含量升高(P〈0.01);在缺血前给予缺血预处理组.SOD活性升高,而MDA、BUN、NO、iNOS含量降低(P〈0.01)。相关分析显示MDA与SOD间存在明显负相关(P〈0.01).而MDA与NO、BUN间呈显著正相关(P〈0.01)。结论:肢体缺血/再灌注时伴有肾脏氧自由基代谢紊乱,缺血预处理可以增强肾组织的抗氧化能力,对肢体缺血再灌注肾损伤具有保护作用。  相似文献   

18.
Ischemic preconditioning (Pre-con) is an adaptive response triggered by a brief ischemia applied before a prolonged coronary occlusion. We tested the hypothesis that repetitive ischemia applied during early reperfusion, i.e., postconditioning (Post-con), is cardio-protective by attenuating reperfusion injury. In anesthetized open-chest dogs, the left anterior descending artery (LAD) was occluded for 60 min and reperfused for 3 h. In controls (n = 10), there was no intervention. In Pre-con (n = 9), the LAD was occluded for 5 min and reperfused for 10 min before the prolonged occlusion. In Post-con (n = 10), at the start of reperfusion, three cycles of 30-s reperfusion and 30-s LAD reocclusion preceded the 3 h of reperfusion. Infarct size was significantly less in the Pre-con (15 +/- 2%, P < 0.05) and Post-con (14 +/- 2%, P < 0.05) groups compared with controls (25 +/- 3%). Tissue edema (% water content) in the area at risk was comparably reduced in Pre-con (78.3 +/- 1.2, P < 0.05) and Post-con (79.7 +/- 0.6, P < 0.05) versus controls (81.5 +/- 0.4). Polymorphonuclear neutrophil (PMN) accumulation (myeloperoxidase activity, Deltaabsorbance.min-1.g tissue-1) in the area at risk myocardium was comparably reduced in Post-con (10.8 +/- 5.5, P < 0.05) and Pre-con (13.4 +/- 3.4, P < 0.05) versus controls (47.4 +/- 15.3). Basal endothelial function measured by PMN adherence to postischemic LAD endothelium (PMNs/mm2) was comparably attenuated by Post-con and Pre-con (15 +/- 0.6 and 12 +/- 0.6, P < 0.05) versus controls (37 +/- 1.5), consistent with reduced expression of P-selectin on coronary vascular endothelium in Post-con and Pre-con. Endothelial function assessed by the maximal vasodilator response of postischemic LAD to acetylcholine was significantly greater in Post-con (104 +/- 6%, P < 0.05) and Pre-con (109 +/- 5%, P < 0.05) versus controls (71 +/- 8%). Plasma malondialdehyde (microM/ml), a product of lipid peroxidation, was significantly less at 1 h of reperfusion in Post-con (2.2 +/- 0.2, P < 0.05) versus controls (3.2 +/- 0.3) associated with a decrease in superoxide levels revealed by dihydroethidium staining in the myocardial area at risk. These data suggest that Post-con is as effective as Pre-con in reducing infarct size and preserving endothelial function. Post-con may be clinically applicable in coronary interventions, coronary artery bypass surgery, organ transplantation, and peripheral revascularization where reperfusion injury is expressed.  相似文献   

19.
丝裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)是广泛表达的丝氨酸/酪氨酸激酶,在哺乳动物细胞多种信号转导通路中起重要作用,MAPKs有3个主要家族:ERKs,JNKs和p38MAPKs.p38信号通路是MAPK通路的一重要分支,在心肌缺血再灌注的损伤中起很重要的作用,p38MAPK信号通路与心肌缺血再灌注机制都有或多或少的联系,本文就以p38MAPK在这一病理过程的研究进展做一综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号