首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Compelling evidence indicates that endothelins (ETs) stimulates aldosterone secretion from rat zona glomerulosa (ZG) cells, acting through the ETB receptor subtype. We have investigated the mechanisms transducing the aldosterone secretagogue signal elicited by the pure activation of ETB receptors. Aldosterone response of dispersed rat ZG cells to the selective ETB-receptor agonist BQ-3020 was not affected by inhibitors of adenylate cyclase/protein kinase (PK)A, tyrosine kinase-, mitogen-activated PK-, cyclooxygenase- and lipoxygenase-dependent pathways. In contrast, the inhibitor of phospholipase C (PLC) U-73122 abrogated, and the inhibitors of PKC, phosphatidylinositol trisphosphate (IP(3))-kinase and calmodulin (calphostin-C, wortmannin and W-7, respectively) partially prevented aldosterone response to BQ-3020. When added together, calphostin-C and wortmannin or W-7 abolished the secretagogue effect of BQ-3020. BQ-3020 elicited a marked increase in the intracellular Ca2+ concentration ([Ca2+]i) in dispersed rat ZG cells, and the effect was abolished by the Ca(2+)-release inhibitor dantrolene. The Ca2+ channel blocker nifedipine affected neither aldosterone nor Ca2+ response to BQ-3020. Collectively, our findings suggest that (1) ETs stimulate aldosterone secretion from rat ZG cells through the activation of PLC-coupled ETB receptors; (2) PLC stimulation leads to the activation of PKC and to the rise in [Ca2+]i with the ensuing activation of calmodulin; and (3) the increase in [Ca2+] is exclusively dependent on the stimulation of IP(3)-dependent Ca2+ release from intracellular stores.  相似文献   

3.
Evidence has been provided that the 21-amino acid hypertensive peptide endothelin (ET)-1 exerts a potent secretagogue effect on human adrenocortical zona glomerulosa (ZG), acting through two receptor subtypes, called ET(A) and ET(B), the signaling mechanism(s) of which has (have) not yet been investigated. Collagenase dispersed human ZG cells were obtained from normal adrenals of patients undergoing nephrectomy/adrenalectomy for renal cancer. The selective ET(A)- and ET(B)-receptor activation was obtained by exposing dispersed cells to ET-1 plus the ET(B)-receptor antagonist BQ-788 and to the ET(B)-receptor agonist BQ-3020, respectively. The phospholipase (PL) C inhibitor U-73122 abolished ET(A) receptor-mediated secretory response, but only partially prevented the ET(B) receptor-mediated one. The phosphatidylinositol 3-kinase inhibitor wortmannin, the calmodulin inhibitor W-7 and the protein kinase (PK) C inhibitor calphostin-C significantly blunted the secretory responses ensuing from the activation of both receptor subtypes. When added together, calphostin-C and wortmannin or W-7 abolished ET(A)-mediated secretory response, but only decreased ET(B)-mediated one. The ET(B) receptor-, but not the ET(A) receptor-mediated aldosterone response was partially reversed by the cyclooxygenase (COX) inhibitor indomethacin, which when added together with U-73122 abolished it. ET(A)-receptor activation raised inositol triphosphate (IP(3)) production from dispersed ZG cells, while ET(B)-receptor stimulation enhanced both IP(3) and prostaglandin-E(2) production. Collectively, our findings indicate that ETs stimulate aldosterone secretion from human ZG cells, acting through ET(A) receptors exclusively coupled to PLC/PKC-dependent pathway and ET(B) receptors coupled to both PLC/PKC- and COX-dependent cascades.  相似文献   

4.
The scales of bony fish represent a significant reservoir of calcium but little is known about their contribution, as well as of bone, to calcium balance and how calcium deposition and mobilization are regulated in calcified tissues. In the present study we report the action of parathyroid hormone-related protein (PTHrP) on calcium mobilization from sea bream (Sparus auratus) scales in an in vitro bioassay. Ligand binding studies of piscine 125I-(1-35(tyr))PTHrP to the membrane fraction of isolated sea bream scales revealed the existence of a single PTH receptor (PTHR) type. RT-PCR of fish scale cDNA using specific primers for two receptor types found in teleosts, PTH1R, and PTH3R, showed expression only of PTH1R. The signalling mechanisms mediating binding of the N-terminal amino acid region of PTHrP were investigated. A synthetic peptide (10(-8) M) based on the N-terminal 1-34 amino acid residues of Fugu rubripes PTHrP strongly stimulated cAMP synthesis and [3H]myo-inositol incorporation in sea bream scales. However, peptides (10(-8) M) with N-terminal deletions, such as (2-34), (3-34) and (7-34)PTHrP, were defective in stimulating cAMP production but stimulated [3H]myo-inositol incorporation. (1-34)PTHrP induced significant osteoclastic activity in scale tissue as indicated by its stimulation of tartrate-resistant acid phosphatase. In contrast, (7-34)PTHrP failed to stimulate the activity of this enzyme. This activity could also be abolished by the adenylyl cyclase inhibitor SQ-22536, but not by the phospholipase C inhibitor U-73122. The results of the study indicate that one mechanism through which N-terminal (1-34)PTHrP stimulates osteoclastic activity of sea bream scales, is through PTH1R and via the cAMP/AC intracellular signalling pathway. It appears, therefore, that fish scales can act as calcium stores and that (1-34)PTHrP regulates calcium mobilization from them; it remains to be established if this mechanism contributes to calcium homeostasis in vivo.  相似文献   

5.
Gastric inhibitory polypeptide (GIP) is a 42-amino acid peptide, belonging to the VIP-secretin-glucagon superfamily, some members of this group are able to regulate adrenocortical function. GIP-receptor mRNA has been detected in the rat adrenal cortex, but investigations on the effect of GIP on steroid-hormone secretion in this species are lacking. Hence, we have investigated the distribution of GIP binding sites in the rat adrenal gland and the effect of their activation in vivo and in vitro. Autoradiography evidenced abundant [125I]GIP binding sites exclusively in the inner adrenocortical layers, and the computer-assisted densitometric analysis of autoradiograms demonstrated that binding was displaced by cold GIP, but not by either ACTH or the selective ACTH-receptor antagonist corticotropin-inhibiting peptide (CIP). The intraperitoneal (IP) injection of GIP dose-dependently raised corticosterone, but not aldosterone plasma concentration: the maximal effective dose (10 nmol/rat) elicited a twofold increase. GIP did not affect aldosterone and cyclic-AMP release by dispersed zona glomerulosa cells. In contrast, GIP enhanced basal corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells in a concentration-dependent manner, and the maximal effective concentration (10(-7) M) evoked 1.5- and 2.4-fold rises in corticosterone and cyclic-AMP production, respectively. GIP (10(-7) M) did not display any additive or potentiating effect on corticosterone and cyclic-AMP responses to submaximal or maximal effective concentrations of ACTH. The corticosterone secretagogue action of 10(-7) M GIP was abolished by the protein kinase A (PKA) inhibitor H-89 (10(-5)M), and unaffected by CIP (10(-6)M). Collectively, these findings indicate that GIP exerts a moderate but statistically significant stimulatory effect on basal glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

6.
Orexins-A and B are two novel hypothalamic peptides, which, like leptin and neuropeptide-Y (NPY), are involved in the central regulation of feeding. Since leptin and NPY were found to modulate adrenal function, we have examined whether orexins are able to directly affect rat adrenal steroid secretion. Both orexin-A and orexin-B raised basal corticosterone secretion of dispersed rat zona fasciculata–reticularis (ZF/R) cells, their maximal effective concentration being 10−8 M. In contrast, orexins did not affect either maximally ACTH (10−9 M)-stimulated corticosterone production by ZF/R cells or the basal and agonist-stimulated aldosterone secretion of dispersed zona glomerulosa cells. The ACTH-receptor antagonist corticotropin-inhibiting peptide (10−6 M) annulled corticosterone response of ZF/R cells to ACTH (10−9 M), but not to orexins (10−8 M). Orexins (10−8 M) enhanced cyclic-AMP release by ZF/R cells, and the selective inhibitor of protein-kinase A (PKA) H-89 (10−5 M) abolished corticosterone responses to both ACTH (10−9 M) and orexins (10−8 M). A subcutaneous injection of both orexins (5 or 10 nmol/kg) evoked a clear-cut increase in the plasma concentration of corticosterone (but not aldosterone), the effect of orexin-A being significantly more intense than that of orexin-B. Collectively, these findings suggest that orexins exert a selective and direct glucocorticoid secretagogue action on the rat adrenals, acting through a receptor-mediated activation of the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

7.
8.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

9.
VIP dose-dependently increased basal, but not submaximally ACTH (10−10 M)-stimulated, aldosterone (ALDO) and corticosterone (B) secretion of dispersed rat capsular and inner adrenocortical cells, respectively. The maximal stimulatory effect (60–70% rise) was obtained with a VIP concentration of 10−8 M. [4-Cl-D-Phe6,Leu17]-VIP, a VIP-receptor antagonist (VIP-A), and corticotropin inhibiting peptide (CIP), an ACTH receptor antagonist (both 10−6 M), completely annulled VIP (10−8M)-evoked rises in basal ALDO and corticosterone secretions. The ACTH (10−10 M)-enhanced (about 5-fold) production of both hormones was completely reversed by CIP (10−6 M) and only partially reduced (about −30%) by VIP-A (10−6 M). The hypothesis is advanced that the weak secretagogue effect of VIP on dispersed rat capsular and inner adrenocortical cells may be due to its positive interaction with ACTH receptors.  相似文献   

10.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

11.
Summary Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70–80%), NMDA-induced inward currents were inhibited by the adenosine AZA receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the AZA receptor selective antagonist 8-(3chlorostyryl) caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP--S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14–24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, AZA receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

12.
Responses to human CGRP, adrenomedullin (ADM), and proadrenomedullin NH2-terminal 20 peptide (PAMP) were studied in small human thymic arteries. CGRP, ADM, and PAMP produced concentration-dependent vasodilator responses in arteries preconstricted with the thromboxane mimic U-46619. Responses to ADM and PAMP were attenuated, whereas responses to CGRP were not altered by endothelial denudation. Inhibitors of nitric oxide synthase and guanylyl cyclase attenuated responses to ADM and PAMP but not to CGRP. The CGRP1 receptor antagonist CGRP(8-37) attenuated responses to CGRP and ADM but not to PAMP. Responses to CGRP were reduced by SQ-22536 and Rp-cAMPS, inhibitors of adenylyl cyclase and PKA. These data suggest that responses to CGRP and ADM are mediated by CGRP(8-37)-sensitive receptors and that the endothelial ADM receptor induces vasodilation by a nitric oxide-guanylyl cyclase mechanism, whereas a smooth muscle CGRP receptor signals by a cAMP-dependent mechanism. A different endothelial receptor recognizes PAMP and signals by a nitric oxide-dependent mechanism.  相似文献   

13.
The effects of the monokines tumor necrosis factor alpha (TNF) and interleukin 1 (IL 1) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TNF and IL 1 incubated with UMR-106 cells for 48 hr each produced concentration-dependent inhibition of PTH-sensitive adenylate cyclase, with maximal inhibition of PTH response (40% for TNF, 24% for IL 1) occurring at 10(-8) M of either monokine. Both monokines also decreased adenylate cyclase stimulation by the tumor-derived PTH-related protein (PTHrP). In contrast, TNF and IL 1 had little or no inhibitory effect on receptor-mediated stimulation of adenylate cyclase by isoproterenol and nonreceptor-mediated enzyme activation by cholera toxin and forskolin; both monokines increased prostaglandin E2 stimulation of adenylate cyclase. Binding of the radioiodinated agonist mono-[125I]-[Nle8,18, Tyr34]bPTH-(1-34)NH2 to UMR-106 cells in the presence of increasing concentrations of unlabeled [Nle8,18, Tyr34]bPTH-(1-34)NH2 revealed a decline in PTH receptor density (Bmax) without change in receptor binding affinity (dissociation constant, Kd) after treatment with TNF or IL 1. Pertussis toxin increased PTH-sensitive adenylate cyclase activity but did not attenuate monokine-induced inhibition of PTH response. In time course studies, brief (1 hr) exposure of cells to TNF or IL 1 during early culture was sufficient to decrease PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. Inhibition of PTH response by monokines was blocked by cycloheximide. The results indicate that TNF and IL 1 impair responsiveness to PTH (and PTHrP) by a time- and protein synthesis-dependent down-regulation of PTH receptors linked to adenylate cyclase.  相似文献   

14.
The influence of extracellular calcium concentration on the steroidogenic response to ACTH and to the angiotensin II analogue [Sar1-Val5]AII has been studied in the frog, using a perfusion system technique. The release of corticosterone and aldosterone in the effluent medium was measured by specific radioimmunoassays. In calcium-free medium the stimulatory effect of ACTH (10(-9) M) was completely abolished whereas the response to dbcAMP (5 mM) was unchanged indicating that the role of calcium takes place before the formation of cAMP. Conversely, in the absence of calcium, angiotensin II (10(-7) M) was still able to stimulate corticosterone and aldosterone production. Addition of Co2+ (4 mM), a calcium antagonist, to the perfusion medium, inhibited partially the response of adrenal tissue to ACTH, dbcAMP and angiotensin. The voltage-dependent calcium channel blocker verapamil (10(-6) induced a dose-related inhibition of the corticotropic effect of ACTH. At the higher dose (10(-4) M), verapamil totally inhibited the stimulation of corticosterone and aldosterone production induced by ACTH. By contrast, at the same dose it did not alter the stimulatory effect of forskolin (2.4 X 10(-7)M) on corticosterone output, but significantly diminished forskolin-induced aldosterone response. Similarly, angiotensin-stimulated corticosterone production was slightly inhibited by 10(-4) M verapamil, whereas aldosterone response to angiotensin was totally abolished, indicating that verapamil may act intracellularly to block the conversion of corticosterone to aldosterone. Taken together, these results indicate that, in amphibians extracellular calcium is essential for the action of ACTH, either for the binding of the hormone to its receptor and/or for the transduction of the information from hormone-receptor complex to the adenylate cyclase moiety and that the mechanism of action of angiotensin does not involve calcium uptake by adrenocortical cells.  相似文献   

15.
AACOF3 is a trifluomethylketone analog of arachidonic acid, which inhibits phospholipase-A2 (PLA2). AACOCF3 was found to concentration-dependently increase basal aldosterone and corticosterone secretion by dispersed rat zona glomerulosa and zona fasciculata/reticularis cells, respectively, as well as aldosterone and cortisol production by dispersed human adrenocortical cells. Maximal effective concentration was 10(-5) M, and elicited about 2.5-3.0-fold rises in steroid output. 10(-5) M AACOCF3 also enhanced submaximally (10(-15)/10(-12) M), but not maximally (10(-9) M) ACTH-stimulated hormonal secretion. Quantitative HPLC showed that 10(-5) M AACOCF3 evokes similar increases (from 2.0- to 3.0-fold) in the basal release of the entire spectrum of adrenocortical steroids (i.e. both intermediate and definitive products of steroid synthesis), thereby suggesting that AACOCF3 acts on the early steps of steroid synthesis. Accordingly, when pregnenolone metabolism is prevented by cyanoketone, 10(-5) M AACOCF3 increased by about 8-10-fold the production of this steroid. In conclusion, we have demonstrated a side-effect of AACOCF3, which may become relevant in studies where this chemical is used to inhibit PLA2 in tissues able to convert cholesterol to pregnenolone.  相似文献   

16.
Parathyroid hormone (PTH, <10–8 M) stimulated adenylate cyclase in fibroblasts, but not epithelial cells, isolated from fetal rat lung. In contrast to osteosarcoma cells (UMR 106), the response of fibroblasts to PTH was increased by pretreatment with cortisol (< 10–8–10–7 M).  相似文献   

17.
18.
PTHrP has important roles in lung development and function. Here we determined the vasomotor responses of isolated pulmonary arteries and veins of newborn and adult sheep to PTHrP. In vessels constricted with endothelin-1, PTHrP (PTHrP 1-34) caused greater relaxation of veins than of arteries. In both vessel types, relaxation to the peptide was less in adult than in newborn vessels. In newborn lambs, PTHrP-induced relaxation was not affected by endothelium removal, inhibition of eNOS, or inhibition of adenylyl cyclases by SQ-22536. However, relaxation was attenuated by 4-aminopyridine, inhibitor of voltage-dependent potassium channels, in both arteries and veins, and by charybdotoxin, inhibitor of calcium-activated potassium channels, in veins. When vessels were saturated with 8-BrcAMP (3 x 10(-4) M), to eliminate relaxation mediated by endogenous cAMP, PTHrP-induced relaxation was partially attenuated. In vessels treated with 8-BrcAMP (3 x 10(-4) M), 4-aminopyridine but not charybdotoxin inhibited relaxation induced by PTHrP 1-34 in both arteries and veins. Radioimmunoassay showed that, in the presence of a general phosphodiesterase inhibitor, PTHrP caused a concentration-dependent increase in intracellular cAMP content in arteries and veins, which was largely abolished by SQ-22536. Our results demonstrate that PTHrP is a potent vasodilator of pulmonary vessels, with a greater effect in veins than in arteries. Relaxation induced by the peptide contains both cAMP-dependent and -independent components. In both arteries and veins, voltage-dependent potassium channels mediate the response to PTHrP, at least in part, in a cAMP-independent fashion; and in veins, calcium-activated potassium channels may be stimulated by elevated cAMP levels.  相似文献   

19.
We tested whether dilation of outer medullary descending vasa recta (OMDVR) is mediated by cAMP, nitric oxide (NO), and cyclooxygenase (COX). Adenosine (A; 10(-6) M)-induced vasodilation of ANG II (10(-9) M)-preconstricted OMDVR was mimicked by the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (10(-10) to 10(-4) M) and reversed by the adenylate cyclase inhibitor SQ-22536. Adenosine (10(-4) M) stimulated OMDVR cAMP production greater than threefold. NO synthase blockade with N(G)-nitro-L-arginine methyl ester and N(G)-monomethyl-L-arginine (10(-4) M) did not affect adenosine vasodilation. Adenosine induced endothelial cytoplasmic calcium transients that were small. Indomethacin (10(-6) M) reversed adenonsine-induced dilation of OMDVR preconstricted with ANG II, endothelin, 4-bromo-calcium ionophore A23187, or carbocyclic thromboxane A(2). In contrast, selective A(2)-receptor activation dilated endothelin-preconstricted OMDVR even in the presence of indomethacin. We conclude that OMDVR vasodilation by adenosine involves cAMP and COX but not NO. COX blockade does not fully inhibit selective A(2) receptor-mediated OMDVR dilation.  相似文献   

20.
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号