首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

3.
The superoxide (O(2))-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome (cytochrome b(559)) and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (Rac1 or -2). NADPH oxidase activation (O(2) production) is elicited as the consequence of assembly of some or all cytosolic components with cytochrome b(559). This process can be reproduced in an in vitro system consisting of phagocyte membranes, p47(phox), p67(phox), and Rac, activated by an anionic amphiphile. We now show that post-translationally processed (prenylated) Rac1 initiates NADPH oxidase assembly, expressed in O(2) production, in a cell-free system containing phagocyte membrane vesicles and p67(phox), in the absence of an activating amphiphile and of p47(phox). Prenylated Cdc42Hs, a GTPase closely related to Rac, is inactive under the same conditions. Results obtained with phagocyte membrane vesicles can be reproduced fully by replacing these with partially purified cytochrome b(559), incorporated in phosphatidylcholine vesicles. Prenylated, but not nonprenylated, Rac1 binds spontaneously to phagocyte membrane vesicles and also to artificial, protein-free, phosphatidylcholine vesicles, a process counteracted by GDP dissociation inhibitor for Rho. Binding of prenylated Rac1 to membrane vesicles is accompanied by the recruitment of p67(phox) to the same location and the formation of an assembled NADPH oxidase complex, producing O(2) upon the addition of NADPH. Amphiphile and p47(phox)-independent NADPH oxidase activation by prenylated Rac1 is inhibited by Rho GDP dissociation inhibitor and by phosphatidylcholine vesicles, both competing with membrane for prenylated Rac1. We conclude that, in vitro, targeting of Rac to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly, suggesting that the principal or, possibly, the only role of Rac is to recruit cytosolic p67(phox) to the membrane environment, to be followed by the interaction of p67(phox) with cytochrome b(559).  相似文献   

4.
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91(phox), p22(phox), p47(phox), and p67(phox), were expressed as stable transgenes. Expression of constitutively active Rac1 in "COS(phox)" cells induced translocation of p47(phox) and p67(phox) to the membrane. Furthermore, translocation of p47(phox) was induced in the absence of p67(phox) expression, even though Rac does not directly bind p47(phox). Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COS(phox) cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex.  相似文献   

5.
NADPH oxidase activation involves the assembly of membrane-localized cytochrome b559 with the cytosolic components p47phox, p67phox, and the small GTPase Rac. Assembly is mimicked by a cell-free system consisting of membranes and cytosolic components, activated by an anionic amphiphile. We reported that a chimeric construct, consisting of residues 1-212 of p67phox and full-length Rac1, activates the oxidase in vitro in an amphiphile-dependent manner, and when prenylated, in the absence of amphiphile and p47phox. We subjected chimera p67phox-(1-212)-Rac1 to mutational analysis and found that: 1) replacement of a single basic residue at the C terminus of the Rac1 moiety by glutamine is sufficient for loss of activity by the non-prenylated chimera; replacement of all six basic residues by glutamines is required for loss of activity by the prenylated chimera. 2) A V204A mutation in the activation domain of the p67phox moiety leads to a reduction in activity. 3) Mutating residues, known to participate in the interaction between free p67phox and Rac1, in the p67phox-(R102E) or Rac1 (A27K, G30S) moieties of the chimera, leads to a marked decrease in activity, indicating a requirement for intrachimeric bonds, in addition to the engineered fusion. 4) Chimeras, inactive because of mutations A27K or G30S in the Rac1 moiety, are reactivated by supplementation with exogenous Rac1-GTP but not with exogenous p67phox. This demonstrates that Rac has a dual role in the assembly of NADPH oxidase. One is to tether p67phox to the membrane; the other is to induce an "activating" conformational change in p67phox.  相似文献   

6.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

7.
Prodigiosins are natural red pigments that have multi-biological activities. Recently, we discovered a marine bacterial strain, which produces a red pigment. Extensive two-dimensional nuclear magnetic resonance and mass spectrometry analysis showed that the pigment is a prodigiosin analogue (PG-L-1). Here, we investigated the effect of PG-L-1 on NADPH oxidase activity in macrophage cells. PG-L-1 significantly inhibited superoxide anion (O(2)(-)) production by phorbol 12-myristate 13-acetate (PMA)-stimulated RAW 264.7 cells, a mouse macrophage cell line. The ED(50) value was estimated to be approximately 0.3 microM. PG-L-1 had no direct scavenging effect on O(2)(-) generated by hypoxanthine/xanthine oxidase system in electron spin resonance-spin trapping determinations, suggesting that this compound directly acts on the O(2)(-) production system, NADPH oxidase, in macrophage cells. We further investigated the effect of PG-L-1 on the behaviour of the cytosolic components of the NADPH oxidase, p67(phox), p47(phox), p40(phox), Rac and protein kinase C (PKC), in PMA-stimulated RAW 264.7 cells. Although PG-L-1 showed no effect on the activation of PKC, the immunoblotting analysis using specific antibodies showed that PG-L-1 strongly inhibits the association of p47(phox) and Rac in the plasma membrane of PMA-stimulated RAW 264.7 cells. These results suggest that PG-L-1 inactivates NADPH oxidase through the inhibition of the binding of p47(phox) and Rac to the membrane components of NADPH oxidase.  相似文献   

8.
Rotenone, a widely used pesticide, reproduces parkinsonism in rodents and associates with increased risk for Parkinson disease. We previously reported that rotenone increased superoxide production by stimulating the microglial phagocyte NADPH oxidase (PHOX). This study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91(phox), the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91(phox). Functional studies showed that both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91(phox)/p22(phox)) and cytosolic subunits (p67(phox) and p47(phox)). Rotenone-elicited extracellular superoxide release in p47(phox)-deficient macrophages suggested that rotenone enabled activation of PHOX through a p47(phox)-independent mechanism. Increased membrane translocation of p67(phox), elevated binding of p67(phox) to rotenone-treated membrane fractions, and coimmunoprecipitation of p67(phox) and gp91(phox) in rotenone-treated wild-type and p47(phox)-deficient macrophages indicated that p67(phox) played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91(phox). Rac1, a Rho-like small GTPase, enhanced p67(phox)-gp91(phox) interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91(phox); such an interaction triggered membrane translocation of p67(phox), leading to PHOX activation and superoxide production.  相似文献   

9.
The phagocyte NADPH oxidase catalyzes the reduction of molecular oxygen to superoxide and is essential for microbial defense. Electron transport through the oxidase flavocytochrome is activated by the Rac effector p67(phox). Previous studies suggest that Vav1 regulates NADPH oxidase activity elicited by the chemoattractant formyl-Met-Leu-Phe (fMLP). We show that Vav1 associates with p67(phox) and Rac2, but not Rac1, in fMLP-stimulated human neutrophils, correlating with superoxide production. The interaction of p67(phox) with Vav1 is direct and activates nucleotide exchange on Rac, which enhances the interaction between p67(phox) and Vav1. This provides new molecular insights into regulation of the neutrophil NADPH oxidase, suggesting that chemoattractant-stimulated superoxide production can be amplified by a positive feedback loop in which p67(phox) targets Vav1-mediated Rac activation.  相似文献   

10.
Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).  相似文献   

11.
Production of toxic oxygen metabolites provides a mechanism for microbicidal activity of the neutrophil. The NADPH oxidase enzyme system initiates the production of oxygen metabolites by reducing oxygen to form superoxide anion (O(2)()). With stimulation of the respiratory burst, cytosolic oxidase components, p47(phox), p67(phox), and Rac, translocate to the phagolysomal and plasma membranes where they form a complex with cytochrome b(558) and express enzyme activity. A 29-kDa neutrophil protein (p29) was identified by co-immunoprecipitation with p67(phox). N-terminal sequence analysis of p29 revealed homology to an open reading frame gene described in a myeloid leukemia cell line. A cDNA for p29 identical to the open reading frame protein was amplified from RNA of neutrophils. Significant interaction between p29 and p67(phox) was demonstrated using a yeast two-hybrid system. A recombinant (rh) p29 was expressed in Sf9 cells resulting in a protein with an apparent molecular weight of 34,000. The rh-p29 showed immunoreactivity with the original rabbit antiserum that detected p47(phox) and p67(phox). In addition, rh-p29 exhibited PLA(2) activity, which was Ca(2+) independent, optimal at low pH, and preferential for phosphatidylcholine substrates. The recombinant protein protected glutathione synthetase and directly inactivated H(2)O(2). By activity and sequence homology, rh-p29 can be classified as a peroxiredoxin. Finally, O(2)() production by plasma membrane and recombinant cytosolic oxidase components in the SDS-activated, cell-free NADPH oxidase system were enhanced by rh-p29. This effect was not inhibited by PLA(2) inhibitors. Thus, p29 is a novel protein that associates with p67 and has peroxiredoxin activity. This protein has a potential role in protecting the NADPH oxidase by inactivating H(2)O(2) or altering signaling pathways affected by H(2)O(2).  相似文献   

12.
Bacterial type III secretion system drives the translocation of virulence factors into the cystosol of host target cells. In phagocytes and in Epstein-Barr virus immortalized B lymphocytes, NADPH oxidase generates O(-2) through an electron transfer chain the activity of which depends on the assembly of three, p67(phox), p47(phox) and p40(phox) cytosolic activating factors with Rac 1/2 and a membrane redox component, cytochrome b(558). In p67(phox) deficient chronic granulomatous disease (CGD) patients, p67-phox is missing and NADPH oxidase activity is abolished. ExoS is a virulence factor of Pseudomonas aeruginosa which is secreted via the type III secretion system: it was fused with p67(phox). Pseudomonas aeruginosa synthesized and translocated the hybrid ExoS-p67(phox) fusion protein into the cytosol of B lymphocytes via the type III secretion system. Purified ExoS-p67(phox) hybrid protein was as efficient as normal recombinant p67(phox) in cell-free reconstitution of NADPH oxidase activity. Therefore, ExoS-p67(phox) was transferred via the type III secretion system of Pseudomonas aeruginosa into the cytosol of B lymphocytes from a p67(phox)-deficient CGD patient and functionally reconstituted NADPH oxidase activity. In the complementation process, ExoS acted as a molecular courier for protein delivery: the reconstitution of an active NADPH oxidase complex suggests type III secretion system to be a new approach for cellular therapy.  相似文献   

13.
We sought to determine the mechanism by which angiotensin II (ANGII) stimulates NADPH oxidase‐mediated superoxide (O2.?) production in bovine pulmonary artery smooth muscle cells (BPASMCs). ANGII‐induced increase in phospholipase D (PLD) and NADPH oxidase activities were inhibited upon pretreatment of the cells with chemical and genetic inhibitors of PLD2, but not PLD1. Immunoblot study revealed that ANGII treatment of the cells markedly increases protein kinase C‐α (PKC‐α), ‐δ, ‐ε, and ‐ζ levels in the cell membrane. Pretreatment of the cells with chemical and genetic inhibitors of PKC‐ζ, but not PKC‐α, ‐δ, and ‐ε, attenuated ANGII‐induced increase in NADPH oxidase activity without a discernible change in PLD activity. Transfection of the cells with p47phox small interfering RNA inhibited ANGII‐induced increase in NADPH oxidase activity without a significant change in PLD activity. Pretreatment of the cells with the chemical and genetic inhibitors of PLD2 and PKC‐ζ inhibited ANGII‐induced p47phox phosphorylation and subsequently translocation from cytosol to the cell membrane, and also inhibited its association with p22phox (a component of membrane‐associated NADPH oxidase). Overall, PLD?PKCζ?p47phox signaling axis plays a crucial role in ANGII‐induced increase in NADPH oxidase‐mediated O2.? production in the cells.  相似文献   

14.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

15.
We sought to determine whether the extracellular compartment contributed to seizure-induced superoxide (O2*-) production and to determine the role of the NADPH oxidase complex as a source of this O2*- production. The translocation of NADPH oxidase subunits (p47phox, p67phox and rac1) was assessed by immunoblot analysis and NADPH-driven O2*- production was measured using 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazo [1,2-alpha] pyrazin-3-one-enhanced chemiluminescence. Kainate-induced status epilepticus resulted in a time-dependent translocation of NADPH oxidase subunits (p47phox, p67phox and rac-1) from hippocampal cytosol to membrane fractions. Hippocampal membrane fractions from kainate-injected rats showed increased NADPH-driven and diphenylene iodonium-sensitive O2*- production in comparison to vehicle-treated rats. The time-course of kainate-induced NADPH oxidase activation coincided with microglial activation in the rat hippocampus. Finally, kainate-induced neuronal damage and membrane oxygen consumption were inhibited in mice overexpressing extracellular superoxide dismutase. These results suggest that seizure activity activates the membrane NADPH oxidase complex resulting in increased formation of O2*-.  相似文献   

16.
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.  相似文献   

17.
The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b(558), the cytosol factors p47(phox), p67(phox), p40(phox), and the small GTPase Rac2, which translocate to the membrane to assemble the active complex following neutrophil activation. Interleukin-8 (IL-8) does not activate NADPH oxidase, but potentiates the oxidative burst induced by stimuli such as formyl-methionyl-leucyl-phenylalanine (fMLP) via a priming mechanism. The effect of IL-8 on the components of NADPH oxidase during the priming process has never been investigated in human neutrophils. Here we showed that within 3 min, IL-8 treatment enhanced the Btk- and ERK1/2-dependent phosphorylation of p47(phox), as well as the recruitment of flavocytochrome b(558), p47(phox), and Rac2 into cholesterol-enriched detergent-resistant microdomains (or lipid rafts). Conversely, IL-8 treatment lasting 15 min failed to recruit flavocytochrome b(558), p47(phox), or Rac2, but did enhance the Btk- and p38 MAPK-dependent phosphorylation and the translocation of p67(phox) into detergent-resistant microdomains. Moreover, methyl-beta-cyclodextrin, which disrupts lipid rafts, inhibited IL-8-induced priming in response to fMLP. Our findings indicate that IL-8-induced priming of the oxidative burst in response to fMLP involves a sequential assembly of the NADPH oxidase components in the lipid rafts of neutrophils.  相似文献   

18.
Eosinophil respiratory burst is an important event in asthma and related inflammatory disorders. However, little is known concerning activation of the respiratory burst NADPH oxidase in human eosinophils. Conversely, neutrophils are known to assemble NADPH oxidase in intracellular and plasma membranes. We hypothesized that eosinophils and neutrophils translocate NADPH oxidase to distinct intracellular locations, consistent with their respective functions in O(2)(-)-mediated cytotoxicity. PMA-induced O(2)(-) release assayed by cytochrome c was 3.4-fold higher in atopic human eosinophils than in neutrophils, although membrane-permeable dihydrorhodamine-123 showed similar amounts of release. Eosinophil O(2)(-) release was dependent on Rac, in that it was 54% inhibited by Clostridium difficile toxin B (400-800 ng/ml). In eosinophils stimulated with PMA, a pronounced shift of cytosolic Rac to p22(phox)-positive plasma membrane was observed by confocal microscopy, whereas neutrophils directed Rac2 mainly to intracellular sites coexpressing p22(phox). Similarly, ex vivo sputum eosinophils from asthmatic subjects exhibited predominantly plasma membrane-associated immunoreactivity for Rac, whereas sputum neutrophils exhibited cytoplasmic Rac2 staining. Thus, activated sputum eosinophils, rather than neutrophils, may contribute significantly to the pathogenesis of asthma by extracellular release of tissue-damaging O(2)(-). Our findings suggest that the differential modes of NADPH oxidase assembly in these cells may have important implications for oxidant-mediated tissue injury.  相似文献   

19.
Role of the small GTPase Rac in p22phox-dependent NADPH oxidases   总被引:2,自引:0,他引:2  
Miyano K  Sumimoto H 《Biochimie》2007,89(9):1133-1144
The superoxide-producing phagocyte NADPH oxidase gp91(phox)/Nox2 and the non-phagocytic oxidases Nox1 and Nox3 each form a complex in the membrane with p22(phox), which provides both stabilization and a docking site for organizer proteins. The p22(phox)-complexed Nox2 and Nox1 are dormant on their own, and their activation requires soluble supportive proteins such as a Nox organizer (p47(phox) or Noxo1) and a Nox activator (p67(phox) or Noxa1). The small GTPase Rac directly binds to the activators, and thus plays an essential role in the Nox2-based oxidase containing p47(phox) and p67(phox) or a positive role in Nox1 activity supported by Noxo1 and Noxa1. Although Nox3 complexed with p22(phox) constitutively produce superoxide, the production can be enhanced by supportive proteins. Here we compare the roles of Rac in these p22(phox)-dependent oxidases using the organizer and activator in different combinations. Expression of constitutively active Rac1(Q61L) is essential for activation of the Nox2- or Nox1-based oxidase containing the organizer p47(phox) and either p67(phox) or Noxa1. When these oxidases use Noxo1 as an organizer instead of p47(phox), they produce a small but significant amount of superoxide without expression of Rac1(Q61L), although the production is enhanced by Rac1(Q61L). Thus p47(phox) is likely related to strict dependence on Rac. The Nox3-based oxidase has a similar tendency in the change of the dependence: Rac plays a positive role in Nox3 activation in the presence of p47(phox) and either p67(phox) or Noxa1, whereas Rac fails to upregulate Nox3 activity when p47(phox) is replaced with Noxo1. We also demonstrate that, in the Nox3-based oxidase containing solely p67(phox) as supportive protein, expression of Rac1(Q61L) enhances not only superoxide production but also membrane translocation of p67(phox). Since the enhancements are not observed with a mutant p67(phox) defective in binding to Rac, this GTPase appear to directly recruit p67(phox) to the membrane.  相似文献   

20.
Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex   总被引:7,自引:0,他引:7  
Phagocyte NADPH oxidase is critical for defense against pathogens and contributes to inflammatory tissue injury. One component of the NADPH oxidase complex is the small GTP-binding protein Rac. There are two isoforms of Rac, and Rac2 is the predominant isoform in neutrophils and has been shown to be essential for NADPH oxidase activity. In primary human monocytes we report that in contrast to neutrophils, Rac1 is the predominantly expressed isoform. Upon monocyte activation by a variety of agents, we found that Rac1 dissociates from Rho GDP dissociation inhibitor (RhoGDI) and translocates to the membrane. We also found that Rac1 interacts with two other NADPH oxidase components, p67phox and p47phox, upon monocyte activation. These data indicate that Rac1, and not Rac2, is a component of the activated NADPH oxidase in monocytes. This finding suggests that it may be possible to selectively interfere with either monocyte or neutrophil NADPH oxidase activity, thereby selectively targeting chronic versus acute inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号