首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atrial arrhythmias are believed to be influenced by autonomic nervous system tone. We evaluated the effects of sympathetic and parasympathetic activation on atrial flutter (AF1) by determining the effects of norepinephrine (NE) and acetylcholine (ACh) on the composition of the excitable gap. A model of reentry around the tricuspid valve was produced in 17 chloralose anesthetized dogs using a Y-shaped lesion in the intercaval area that extended to the right atrial appendage. Excitable gap characteristics were determined during AF1 by scanning diastole with a single premature extrastimulus at progressively shorter coupling intervals to define the reset-response curve. Measurements were made during a constant infusion of NE (15 microg/min) into the right coronary artery and repeated during ACh infusion (2 microg/min) following a 15 min recovery period. The excitable gap (27 +/- 1 ms) was significantly (P < 0.001) increased by NE (34 +/- 1 ms) and ACh (50 +/- 2 ms). The fully excitable portion (7 +/- 1 ms) was also significantly (P < 0.001) increased by NE (17 +/- 1 ms) and ACh (43 +/- 2 ms). We conclude that both neurotransmitters increase the safety margin of full excitability ahead of the wavefront, demonstrating that parasympathetic and sympathetic activation can facilitate the persistence of this refractory atrial arrhythmia.  相似文献   

2.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

3.
We studied the homeostatic secretory response of catecholamine secretion elicited by progressive bronchoconstriction in 18 swine in vivo. The potential reserve of the sympathetic nervous system (SNS) was first assessed by exogenous nicotinic stimulation with 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). A dose of 250 micrograms/kg iv DMPP caused an increase in plasma norepinephrine (NE) concentration from 207 +/- 86 (basal) to 2,625 +/- 448 pg/ml (P less than 0.02) and in plasma epinephrine (EPI) from 10 +/- 5.0 to 1,410 +/- 432 pg/ml (P less than 0.05) in four swine. In four other swine, bronchoconstriction induced by aerosolized prostaglandin F2 alpha caused approximately a fivefold increase in airway resistance without hemodynamic changes. No increase in plasma EPI was observed. However, plasma NE increased from 330 +/- 131 to 1,540 +/- 182 pg/ml (P less than 0.02). In five swine receiving aerosolized acetylcholine (ACh), similar changes in airways resistance were not associated with significant changes in catecholamine concentration when mean arterial blood pressure (MAP) was unchanged. However, inhalation of sufficient ACh to cause a greater than 10% decrease in MAP caused progressive increase in catecholamine secretion. Plasma EPI increased from 32 +/- 16 (MAP = 124 +/- 7 Torr) to 1,165 +/- 522 pg/ml (MAP = 94 +/- Torr). Hypoxemia that occurred with bronchoconstriction (greater than or equal to 50 Torr) did not cause catecholamine secretion. However, severe hypoxemia (PO2 less than 30 Torr) caused large increases in plasma EPI concentrations from 84 +/- 27 to 1,463 +/- 945 pg/ml (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The release of neuropeptide Y like immunoreactivity (NPY-li) from the adrenal gland was studied in relation to the secretion of catecholamines (CA: NE, norepinephrine; E, epinephrine) during the left splanchnic nerve stimulation in thiopental-chloralose anesthetized dogs (n = 16). Plasma concentrations of NE, E, and NPY-li were determined in the left adrenal venous and aortic blood. Adrenal outputs of NPY-li, NE, and E were 2.4 +/- 0.4, 1.4 +/- 0.2, and 7.3 +/- 1.7 ng/min, under basal conditions, respectively. These values increased significantly (p less than 0.05; n = 8) in response to a continuous stepwise stimulation at frequencies of 1, 3, and 10 Hz given at 3-min intervals during 9 min, reaching a maximum output of 4.6 +/- 0.9 (NPY-li), 240.2 +/- 50.2 (NE), and 1412.5 +/- 309.7 ng/min (E) at a frequency of 10 Hz. Burst electrical stimulation at 40 Hz for 1 s at 10-s intervals for a period of 10 min produced similar increases (p less than 0.05) in the release of NPY-li (4.8 +/- 1.0 ng/min, n = 8), NE (283.5 +/- 144.3 ng/min, n = 8), and E (1133.5 +/- 430.6 ng/min, n = 8). Adrenal NPY-li output was significantly correlated with adrenal NE output (r = 0.606; n = 24; p less than 0.05) and adrenal E output (r = 0.640; n = 24; p less than 0.05) in dogs receiving the burst stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Vestibulosympathetic reflex during mental stress.   总被引:2,自引:0,他引:2  
Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly (P < 0.05) increased MSNA (9 +/- 2 to 13 +/- 2 bursts/min). MS significantly increased MSNA (8 +/- 2 to 13 +/- 2 bursts/min) and mean arterial pressure (87 +/- 2 to 101 +/- 2 mmHg). Combined HDR and MS significantly increased MSNA (9 +/- 1 to 16 +/- 2 bursts/min) and mean arterial pressure (89 +/- 2 to 100 +/- 3 mmHg). Increases in MSNA (7 +/- 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 +/- 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.  相似文献   

6.
The effects of muscarinic receptor antagonists on responses to electrical stimulation of the chorda-lingual nerve were determined in pentobarbitone-anesthetized sheep and correlated to the morphology of tissue specimens. Stimulation at 2 Hz continuously, or in bursts of 1 s at 20 Hz every 10 s, for 10 min induced similar submandibular fluid responses (19 +/- 3 vs. 21 +/- 3 microl x min(-1) x g gland(-1)), whereas vasodilatation was greater during stimulation in bursts (-52 +/- 4 vs. -43 +/- 5%; P < 0.01). Continuous stimulation at 8 Hz induced substantially greater responses (66 +/- 9 microl x min(-1) x g gland(-1) and -77 +/- 3%). While atropine (0.5 mg/kg iv) abolished the secretory response at 2 and 20 Hz (1:10 s), a small response persisted at 8 Hz (<5%). The "M1-selective" antagonist pirenzepine (40 microg/kg iv) reduced the fluid response at all frequencies tested (P < 0.05-0.01), most conspicuously at 2 Hz (reduced by 69%). Methoctramine ("M2/M4-selective"; 100 microg/kg iv; n = 5) had no effect on fluid or the vascular responses but increased the protein output at 2 (+90%, P < 0.05) and 8 Hz (+45%, P < 0.05). The immunoblotting showed distinct bands for muscarinic M1, M3, M4, and M5 receptors, and immunohistochemistry showed muscarinic M1 and M3 receptors to occur in the parenchyma. Thus muscarinic M1 receptors contribute to the secretory response to parasympathetic stimulation but have little effect on the vasodilatation in the ovine submandibular gland. Increased transmitter release caused by blockade of neuronal inhibitory receptors of the M4 subtype would explain the increase in protein output.  相似文献   

7.
Although electroacupuncture reduces sympathetic nerve activity (SNA) and arterial pressure (AP), the effects of electroacupuncture on the arterial baroreflex remain to be systematically analyzed. We investigated the effects of electroacupuncture of Zusanli on the arterial baroreflex using an equilibrium diagram comprised of neural and peripheral arcs. In anesthetized, vagotomized, and aortic-denervated rabbits, we isolated carotid sinuses and changed intra-carotid sinus pressure (CSP) from 40 to 160 mmHg in increments of 20 mmHg/min while recording cardiac SNA and AP. Electroacupuncture of Zusanli was applied with a pulse duration of 5 ms and a frequency of 1 Hz. An electric current 10 times the minimal threshold current required for visible muscle twitches was used and was determined to be 4.8 +/- 0.3 mA. Electroacupuncture for 8 min decreased SNA and AP (n = 6). It shifted the neural arc (i.e., CSP-SNA relationship) to lower SNA but did not affect the peripheral arc (i.e., SNA-AP relationship) (n = 8). SNA and AP at the closed-loop operating point, determined by the intersection of the neural and peripheral arcs, decreased from 100 +/- 4 to 80 +/- 9 arbitrary units and from 108 +/- 9 to 99 +/- 8 mmHg (each P < 0.005), respectively. Peroneal denervation eliminated the shift of neural arc by electroacupuncture (n = 6). Decreasing the pulse duration to <2.5 ms eliminated the effects of SNA and AP reduction. In conclusion, short-term electroacupuncture resets the neural arc to lower SNA, which moves the operating point toward lower AP and SNA under baroreflex closed-loop conditions.  相似文献   

8.
Exposure to lower body negative pressure (LBNP) leads to an increased activation of the sympathetic nervous system (SNS) and an increase in muscle sympathetic nerve activity (MSNA). In this study, we examined the relationship between MSNA and interstitial norepinephrine (NE(i)) concentrations during LBNP. Twelve healthy volunteers were studied (26 +/- 6 yr). Simultaneous MSNA and microdialysis data were collected in six of these subjects. Measurements of MSNA (microneurography) and NE(i) (microdialysis, vastus lateralis) were performed at rest and then during an incremental LBNP paradigm (-10, -30, and -50 mmHg). MSNA rose as a function of LBNP (P < 0.001, n = 12). The plasma norepinephrine (NE(p)) concentration was 0.9 +/- 0.1 nmol/l at rest (n = 12). NE(i) measured in six subjects rose from 5.2 +/- 0.8 nmol/l at rest to 17.0 +/- 1.7 nmol/l at -50 mmHg (P < 0.001). Of note, the rise in NE(p) with LBNP was considerably less compared with the changes in NE(i) (Delta21 +/- 6% vs. Delta197 +/- 52%, n = 6, P < 0.015). MSNA and NE(i) showed a significant linear relationship (r = 0.721, P < 0.004). Activation of the SNS increased MSNA and NE(i) levels. The magnitude of the NE(i) increase was far greater than that seen for NE(p) suggesting that NE movement into the circulation decreases with baroreceptor unloading.  相似文献   

9.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

10.
Catecholamine release is known to be regulated by feedforward and feedback mechanisms. Norepinephrine (NE) and epinephrine (Epi) concentrations rise in response to stresses, such as exercise, that challenge blood glucose homeostasis. The purpose of this study was to assess the hypothesis that the lactate anion is involved in feedback control of catecholamine concentration. Six healthy active men (26 +/- 2 yr, 82 +/- 2 kg, 50.7 +/- 2.1 ml.kg(-1).min(-1)) were studied on five occasions after an overnight fast. Plasma concentrations of NE and Epi were determined during 90 min of rest and 90 min of exercise at 55% of peak O2 consumption (VO2 peak) two times with exogenous lactate infusion (lactate clamp, LC) and two times without LC (CON). The blood lactate profile ( approximately 4 mM) of a preliminary trial at 65% VO2 peak (65%) was matched during the subsequent LC trials. In resting men, plasma NE concentration was not different between trials, but during exercise all conditions were different with 65% > CON > LC (65%: 2,115 +/- 166 pg/ml, CON: 1,573 +/- 153 pg/ml, LC: 930 +/- 174 pg/ml, P < 0.05). Plasma Epi concentrations at rest were different between conditions, with LC less than 65% and CON (65%: 68 +/- 9 pg/ml, CON: 59 +/- 7 pg/ml, LC: 38 +/- 10 pg/ml, P < 0.05). During exercise, Epi concentration showed the same trend (65%: 262 +/- 37 pg/ml, CON: 190 +/- 34 pg/ml, LC: 113.2 +/- 23 pg/ml, P < 0.05). In conclusion, lactate attenuates the catecholamine response during moderate-intensity exercise, likely by feedback inhibition.  相似文献   

11.
The relative importance of skin vs. core temperature for stimulating cold acclimation (CA) was examined by 5 wk of daily 1-h water immersions (20 degrees C) in resting (RG) and exercising (EG) subjects. Rectal temperature fell (0.8 degrees C; P < 0.05) during immersion only in RG. Skin temperature fell (P < 0.05) similarly in both groups. Physiological responses during cold-air exposure (90 min, 5 degrees C) were assessed before and after CA. Body temperatures and metabolic heat production were similar in both groups with no change due to CA. Cardiac output was lower (P < 0.05) in both groups post-CA (10.4 +/- 1.2 l/min) than pre-CA (12.2 +/- 1. 0 l/min), but mean arterial pressure was unchanged (pre-CA 107 +/- 2 mmHg, post-CA 101 +/- 2 mmHg). The increase in norepinephrine was greater (P < 0.05) post-CA (954 +/- 358 pg/ml) compared with pre-CA (1,577 +/- 716 pg/ml) for RG, but CA had no effect on the increase in norepinephrine for EG (pre-CA 1,288 +/- 438 pg/ml, post-CA 1,074 +/- 279 pg/ml). Skin temperature reduction alone may be a sufficient stimulus during CA for increased vasoconstrictor response, but core temperature reduction appears necessary to enhance sympathetic activation during cold exposure.  相似文献   

12.
The present study was designed to examine the effect of sympathetic tonic activity on parasympathetic vasodilation evoked by the trigeminal-mediated reflex in the masseter muscle in urethane-anesthetized rats. Sectioning of the superior cervical sympathetic trunk (CST) ipsilaterally increased the basal level of blood flow in the masseter muscle (MBF). Electrical stimulation of the peripheral cut end of the CST for 2 min using 2-ms pulses ipsilaterally decreased in a dependent manner the intensity (0.5-10 V) and frequency (0.1-5 Hz) of the MBF. The CST stimulation for 2 min at <0.5 Hz with 5 V using 2-ms pulses seems to be comparable with the spontaneous activity in the CST fibers innervating the masseter vasculature, because this stimulation restored the basal level of the MBF to the presectioned values. Parasympathetic vasodilation evoked by electrical stimulation of the central cut end of the lingual nerve in the masseter muscle was markedly reduced by CST stimulation for 2 min with 5 V using 2-ms pulses in a frequency-dependent manner (0.5-5 Hz). Intravenous administration of phentolamine significantly reduced the vasoconstriction induced by CST stimulation in a dose-dependent manner (0.1-1 mg/kg), but pretreatment with either phentolamine or propranolol failed to affect the sympathetic inhibition of the parasympathetic vasodilation. Our results suggest that 1) excess sympathetic activity inhibits parasympathetic vasodilation in the masseter muscle, and 2) alpha- and beta-adrenoceptors do not contribute to sympathetic inhibition of parasympathetic vasodilation, and thus some other types of receptors must be involved in this response.  相似文献   

13.
Neuronal uptake is the most important mechanism by which norepinephrine (NE) is removed from the synaptic clefts at sympathetic nerve terminals. We examined the effects of neuronal NE uptake blockade on the dynamic sympathetic regulation of the arterial baroreflex because dynamic characteristics are important for understanding the system behavior in response to exogenous disturbance. We perturbed intracarotid sinus pressure (CSP) according to a binary white noise sequence in anesthetized rabbits, while recording cardiac sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR). Intravenous administration of desipramine (1 mg/kg) decreased the normalized gain of the neural arc transfer function from CSP to SNA relative to untreated control (1.03 +/- 0.09 vs. 0.60 +/- 0.08 AU/mmHg, mean +/- SE, P < 0.01) but did not affect that of the peripheral arc transfer function from SNA to AP (1.10 +/- 0.05 vs. 1.08 +/- 0.10 mmHg/AU). The normalized gain of the transfer function from SNA to HR was unaffected (1.01 +/- 0.04 vs. 1.09 +/- 0.12 beats.min(-1).AU(-1)). Desipramine decreased the natural frequency of the transfer function from SNA to AP by 28.7 +/- 7.0% (0.046 +/- 0.007 vs. 0.031 +/- 0.002 Hz, P < 0.05) and that of the transfer function from SNA to HR by 64.4 +/- 2.2% (0.071 +/- 0.003 vs. 0.025 +/- 0.002 Hz, P < 0.01). In conclusion, neuronal NE uptake blockade by intravenous desipramine administration reduced the total buffering capacity of the arterial baroreflex mainly through its action on the neural arc. The differential effects of neuronal NE uptake blockade on the dynamic AP and HR responses to SNA may provide clues for understanding the complex pathophysiology of cardiovascular diseases associated with neuronal NE uptake deficiency.  相似文献   

14.
Although electrical vagal stimulation exerts beneficial effects on the ischemic heart such as an antiarrhythmic effect, whether it modulates norepinephrine (NE) and acetylcholine (ACh) releases in the ischemic myocardium remains unknown. To clarify the neural modulation in the ischemic region during vagal stimulation, we examined ischemia-induced NE and ACh releases in anesthetized and vagotomized cats. In a control group (VX, n = 8), occlusion of the left anterior descending coronary artery increased myocardial interstitial NE level from 0.46+/-0.09 to 83.2+/-17.6 nM at 30-45 min of ischemia (mean+/-SE). Vagal stimulation at 5 Hz (VS, n = 8) decreased heart rate by approximately 80 beats/min during the ischemic period and suppressed the NE release to 24.4+/-10.6 nM (P < 0.05 from the VX group). Fixed-rate ventricular pacing (VSP, n=8) abolished this vagally mediated suppression of ischemia-induced NE release. The vagal stimulation augmented ischemia-induced ACh release at 0-15 min of ischemia (VX: 11.1+/-2.1 vs. VS: 20.7+/-3.9 nM, P < 0.05). In the VSP group, the ACh release was not augmented. In conclusion, vagal stimulation suppressed the ischemia-induced NE release and augmented the initial increase in the ACh level. These modulations of NE and ACh levels in the ischemic myocardium may contribute to the beneficial effects of vagal stimulation on the heart during acute myocardial ischemia.  相似文献   

15.
The sympathetic neurotransmitter norepinephrine (NE) influences renal sodium excretion via activation of adrenergic receptors. The thick ascending limb (THAL) possesses both alpha-2 and beta-adrenergic receptors. However, the role(s) different adrenergic receptors play in how isolated THALs respond to NE are unclear. We tested the hypothesis that both alpha-2 and beta-adrenergic receptors are responsive to NE in the isolated THAL, with alpha-2 receptors inhibiting and beta-receptors stimulating chloride flux (J(Cl)). THALs from male Sprague-Dawley rats were perfused in vitro, and the effects of 1) incremental NE, 2) the alpha-2 agonist clonidine, and 3) the beta-agonist isoproterenol on J(Cl) were measured. Low concentrations (0.1 nM) of NE decreased J(Cl) from a rate of 114.2 +/- 8.1 to 93.5 +/- 14.6 pmol. mm(-1). min(-1) (P < 0.05), with the nadir occurring at 1 nM (67.7 +/- 8.8 pmol. mm(-1). min(-1); P < 0.05). In contrast, greater concentrations of NE significantly increased J(Cl) from the nadir to a maximal rate of 131.0 +/- 28.5 pmol. mm(-1). min(-1) at 10 microM (P < 0.05). To evaluate the adrenergic receptors mediating these responses, the THAL J(Cl) response to NE was measured in the presence of selective antagonists of beta- and alpha-2 receptors. A concentration of NE (1 microM), which alone tended to increase J(Cl), decreased THAL J(Cl) (from 148.9 +/- 16.4 to 76.2 +/- 13.6 pmol. mm(-1). min(-1); P < 0.01) in the presence of the beta-antagonist propranolol. In contrast, a concentration of NE (0.1 microM), which alone tended to decrease J(Cl), increased THAL J(Cl) (from 85.5 +/- 20.1 to 111.8 +/- 20.1 pmol. mm(-1). min(-1); P < 0.05) in the presence of the alpha-2 antagonist rauwolscine. To further clarify the role of different adrenergic receptors, selective adrenergic agonists were used. The alpha-2 agonist clonidine decreased J(Cl) from 102.4 +/- 9.9 to 54.0 +/- 15.7 pmol. mm(-1). min(-1), a reduction of 49.1 +/- 11.0% (P < 0.02). In contrast, the beta-agonist isoproterenol stimulated J(Cl) from 95.3 +/- 11.6 to 144.1 +/- 15.0 pmol. mm(-1). min(-1), an increase of 56 +/- 14% (P < 0.01). We conclude that 1) the sympathetic neurotransmitter NE exerts concentration-dependent effects on J(Cl) in the isolated rat THAL, 2) selective alpha-2 receptor activation inhibits THAL J(Cl), and 3) selective beta-receptor activation stimulates THAL J(Cl). These data indicate the response elicited by the isolated rat THAL to NE is dependent on the neurotransmitter concentration, such that application of NE in vitro biphasically modulates J(Cl) via differential activation of alpha-2 and beta-adrenergic receptors in a concentration-dependent manner.  相似文献   

16.
Koepp J  Caous CA  Rae GA  Balan AC  Lindsey CJ 《Peptides》2005,26(8):1339-1345
The influence of kinin and opioid receptor blockade in the paratrigeminal nucleus (Pa5) on the somatosensory reflex (SSR) to sciatic nerve stimulation (SNS) was assessed in anaesthetized-paralyzed rats. SNS (square 1 ms pulses at 0.6 mA and 20 Hz for 10s) increased mean arterial pressure from 87+/-3 to 106+/-3 mmHg. Pressor responses to SNS were reduced 40-60% by HOE-140 and LF 16-0687 (B2 receptor antagonists; 20 and 100 pmol respectively), CTOP or nor-binaltorphimine (mu and kappa opioid receptor antagonists, respectively; 1 microg) but potentiated by naltrindole (delta opioid receptor antagonist) receptor antagonist microinjections into the contralateral (but not ipsilateral) Pa5. The SSR to sciatic nerve stimulation was not changed by B1 kinin receptor or NK1, NK2 and NK3 tachykinin receptor antagonists administered to the Pa5. Capsaicin pretreatment (40 mg/kg/day, 3 days) abolished the effects of the opioid receptor antagonists, but did not change the effect of kinin B2 receptor blockade on the SSR. Thus, the activity of B2 and opioid receptor-operated mechanisms in the Pa5 contribute to the SSR in the rat, suggesting a role for these endogenous peptides in the cardiovascular responses to SNS.  相似文献   

17.
It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under alpha-chloralose (40 mg/kg) and urethane (800 mg/kg i.p.) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 microg i.v.) and phenylephrine (10 microg i.v.). Left ventricular epicardial application of capsaicin (0.4 microg in 2 microl) blunted arterial baroreflex function by 46% (maximum slope 3.5 +/- 0.3 to 1.9 +/- 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 +/- 0.3 to 1.9 +/- 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 microl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 +/- 0.4 to 3.1 +/- 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.  相似文献   

18.
We investigated the relationship between autonomic activity to the pancreas and insulin secretion in chronically catheterized dogs when food was shown, during eating, and during the early absorptive period. Pancreatic polypeptide (PP) output, pancreatic norepinephrine spillover (PNESO), and arterial epinephrine (Epi) were measured as indexes for parasympathetic and sympathetic nervous activity to the pancreas and for adrenal medullary activity, respectively. The relation between autonomic activity and insulin secretion was confirmed by autonomic blockade. Showing food to dogs initiated a transient increase in insulin secretion without changing PP output or PNESO. Epi did increase, suggesting beta(2)-adrenergic mediation, which was confirmed by beta-adrenoceptor blockade. Eating initiated a second transient insulin response, which was only totally abolished by combined muscarinic and beta-adrenoceptor blockade. During absorption, insulin increased to a plateau. PP output showed the same pattern, suggesting parasympathetic mediation. PNESO decreased by 50%, suggesting withdrawal of inhibitory sympathetic neural tone. We conclude that 1) the insulin response to showing food is mediated by the beta(2)-adrenergic effect of Epi, 2) the insulin response to eating is mediated both by parasympathetic muscarinic stimulation and by the beta(2)-adrenergic effect of Epi, and 3) the insulin response during early absorption is mediated by parasympathetic activation, with possible contribution of withdrawal of sympathetic neural tone.  相似文献   

19.
To test whether changes in sympathetic nervous system (SNS) activity or insulin sensitivity contribute to the heterogeneous blood pressure response to aerobic exercise training, we used compartmental analysis of [3H]norepinephrine kinetics to determine the extravascular norepinephrine release rate (NE2) as an index of systemic SNS activity and determined the insulin sensitivity index (S(I)) by an intravenous glucose tolerance test, before and after 6 mo of aerobic exercise training, in 30 (63 +/- 7 yr) hypertensive subjects. Maximal O2 consumption increased from 18.4 +/- 0.7 to 20.8 +/- 0.7 ml x kg(-1) x min(-1) (P = 0.02). The average mean arterial blood pressure (MABP) did not change (114 +/- 2 vs. 114 +/- 2 mmHg); however, there was a wide range of responses (-19 to +17 mmHg). The average NE2 did not change significantly (2.11 +/- 0.15 vs. 1.99 +/- 0.13 microg x min(-1) x m(-2)), but there was a significant positive linear relationship between the change in NE2 and the change in MABP (r = 0.38, P = 0.04). S(I) increased from 2.81 +/- 0.37 to 3.71 +/- 0.42 microU x 10(-4) x min(-1) x ml(-1) (P = 0.004). The relationship between the change in S(I) and the change in MABP was not statistically significant (r = -0.03, P = 0.89). When the changes in maximal O2 consumption, percent body fat, NE2, and S(I) were considered as predictors of the change in MABP, only NE2 was a significant independent predictor. Thus suppression of SNS activity may play a role in the reduction in MABP and account for a portion of the heterogeneity of the MABP response to aerobic exercise training in older hypertensive subjects.  相似文献   

20.
The present study was designed to investigate brain stem responses to manual acupuncture (MA) and electroacupuncture (EA) at different frequencies at pericardial P (5-6) acupoints located over the median nerve. Activity of premotor sympathetic cardiovascular neurons in the rostral ventral lateral medulla (rVLM) was recorded during stimulation of visceral and somatic afferents in ventilated anesthetized rats. We stimulated either the splanchnic nerve at 2 Hz (0.1-0.4 mA, 0.5 ms) or the median nerve for 30 s at 2, 10, 20, 40, or 100 Hz using EA (0.3-0.5 mA, 0.5 ms) or at approximately 2 Hz with MA. Twelve of 18 cells responsive to splanchnic and median nerve stimulation could be antidromically driven from the intermediolateral columns of the thoracic spinal cord, T2-T4, indicating that they were premotor sympathetic neurons. All 18 neurons received baroreceptor input, providing evidence of their cardiovascular sympathoexcitatory function. Evoked responses during stimulation of the splanchnic nerve were inhibited by 49 +/- 6% (n = 7) with EA and by 46 +/- 4% (n = 6) with MA, indicating that the extent of inhibitory effects of the two modalities were similar. Inhibition lasted for 20 min after termination of EA or MA. Cardiovascular premotor rVLM neurons responded to 2-Hz electrical stimulation at P 5-6 and to a lesser extent to 10-, 20-, 40-, and 100-Hz stimulation (53 +/- 10, 16 +/- 2, 8 +/- 2, 2 +/- 1, and 0 +/- 0 impulses/30 stimulations, n = 7). These results indicate that rVLM premotor sympathetic cardiovascular neurons that receive convergent input from the splanchnic and median nerves during low-frequency EA and MA are inhibited similarly for prolonged periods by low-frequency MA and EA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号