首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cardiac "sympathetic afferent" reflex (CSAR) has been reported to increase sympathetic outflow and depress baroreflex function via a central angiotensin II (ANG II) mechanism. In the present study, we examined the role of ANG II type 1 (AT(1)) receptors in the nucleus tractus solitarii (NTS) in mediating the interaction between the CSAR and the baroreflex in anesthetized rats. We examined the effects of bilateral microinjection of AT(1) receptor antagonist losartan (100 pmol) into the NTS on baroreflex control of renal sympathetic nerve activity (RSNA) before and after CSAR activation by epicardial application of capsaicin (0.4 microg). Using single-unit extracellular recording, we further examined the effects of CSAR activation on the barosensitivity of barosensitive NTS neurons and the effects of intravenous losartan (2 mg/kg) on CSAR-induced changes in activity of NTS barosensitive neurons. Bilateral NTS microinjection of losartan significantly attenuated the increases in arterial pressure, heart rate, and RSNA evoked by capsaicin but also markedly (P < 0.01) reversed the CSAR-induced blunted baroreflex control of RSNA (Gain(max) from 1.65 +/- 0.10 to 2.22 +/- 0.11%/mmHg). In 17 of 24 (70.8%) NTS barosensitive neurons, CSAR activation significantly (P < 0.01) inhibited the baseline neuronal activity and attenuated the neuronal barosensitivity. In 11 NTS barosensitive neurons, intravenous losartan effectively (P < 0.01) normalized the decreased neuronal barosensitivity induced by CSAR activation. In conclusion, blockade of NTS AT(1) receptors improved the blunted baroreflex during CSAR activation, suggesting that the NTS plays an important role in processing the interaction between the baroreflex and the CSAR via an AT(1) receptor-dependent mechanism.  相似文献   

2.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

3.
Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT(1)R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT(1)R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT(1)R mRNA. AT(1)R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT(1)R mRNA antisense reduces expression of AT(1)R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.  相似文献   

4.
Cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation. The present study was designed to investigate the contribution of enhanced CSAR to sympathetic activation in the early stage of diabetes and the involvement of AT(1) receptors in the paraventricular nucleus (PVN). Diabetes was induced by a single intravenous injection of streptozotocin in rats. Acute experiments were carried out under anesthesia after 3 wk. The CSAR was evaluated by the responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin or bradykinin. Sympathetic activity and CSAR were enhanced in diabetic rats. Plasma norepinephrine and angiotensin II were increased, but the transient receptor potential vanilloid 1 (TRPV1) in the left ventricle wall was not significantly increased in diabetic rats. Pericardial injection of resiniferatoxin to desensitize cardiac afferents or PVN microinjection of lidocaine attenuated the CSAR and decreased the RSNA and MAP in diabetic rats. The AT(1) receptor expression in the PVN increased in diabetic rats. Angiotensin II in the PVN caused greater increases in the RSNA and MAP and enhancement in the CSAR in diabetic rats, which were abolished by the losartan pretreatment. Losartan decreased the RSNA and MAP and attenuated the CSAR in diabetic rats but not in control rats. These results indicate that the CSAR is enhanced in the early stage of diabetic rats, which contributes to the sympathetic activation. AT(1) receptors in the PVN are involved in the enhanced CSAR in diabetic rats.  相似文献   

5.
Although it has been shown that long-term exercise training preserves endothelium-mediated nitric oxide vasodilator function in chronic heart failure (CHF), whether exercise training exerts similar beneficial effects on endothelial/prostaglandin-mediated vasodilator capacity in coronary circulation during the development of CHF has not been determined. Fifteen mongrel dogs were surgically instrumented for measurement of left ventricular pressure, aortic pressure, coronary blood flow and left circumflex coronary artery diameter. Dogs (n = 5) who underwent 4 weeks of cardiac pacing (210 b/min for 3 weeks and 240 b/min for the 4th week) developed CHF as characterized by significant reduction in left ventricular systolic pressure, mean arterial pressure and left ventricular dP/dt, increases in left ventricular end-diastolic pressure and heart rate, as well as clinical signs of CHF. Endothelial prostaglandin-mediated vasodilation of the epicardial coronary artery was impaired, as manifested by an attenuated arachidonic acid (AA)-induced dilation of the artery (epicardial artery diameter increased by: 0.78 +/- 0. 84% in CHF versus 4.6 +/- 0.89% in normal, P < 0.05); however, prostacyclin (PGI(2))-induced and nitroglycerin-induced vasodilation of the coronary circulation were not altered. In contrast, dogs (n = 6) with cardiac pacing plus daily exercise training (4.4 +/- 0.3 km/h, 2 h/day) only developed mild cardiac dysfunction, and the response of the epicardial coronary artery diameter to AA was preserved (epicardial artery diameter increased by 4.2 +/- 0.98% from baseline, P 0.05 compared to its respective control). Thus, long-term exercise training preserves endothelial/prostaglandin-mediated dilation of epicardial coronary artery during development of CHF.  相似文献   

6.
Myocardial ischemia stimulates cardiac spinal afferents to initiate a sympathoexcitatory reflex. However, the pathways responsible for generation of increased sympathetic outflow in this reflex are not fully known. In this study, we determined the role of the paraventricular nucleus (PVN) in the cardiogenic sympathetic reflex. Renal sympathetic nerve activity (RSNA) and blood pressure were recorded in anesthetized rats during epicardial application of 10 microg/ml bradykinin. Bilateral microinjection of muscimol (0.5 nmol), a GABA(A) receptor agonist, was performed to inhibit the PVN. In 10 vehicle-injected rats, epicardial bradykinin significantly increased RSNA 178.4 +/- 48.5% from baseline, and mean arterial pressure from 76.9 +/- 2.0 to 102.3 +/- 3.3 mmHg. Microinjection of muscimol into the PVN significantly reduced the basal blood pressure and RSNA (n = 12). After muscimol injection, the bradykinin-induced increases in RSNA (111.6 +/- 35.9% from baseline) and mean arterial pressure (61.2 +/- 1.3 to 74.5 +/- 2.7 mmHg) were significantly reduced compared with control responses. The response remained attenuated even when the basal blood pressure was restored to the control. In a separate group of rats (n = 9), bilateral microinjection of the ionotropic glutamate antagonist kynurenic acid (4.82 or 48.2 nmol in 50 nl) had no significant effect on the RSNA and blood pressure responses to bradykinin compared with controls. These results suggest that the tonic PVN activity is important for the full manifestation of the cardiogenic sympathoexcitatory response. However, ionotropic glutamate receptors in the PVN are not directly involved in this reflex response.  相似文献   

7.
The hypothesis that acetaminophen can reduce necrosis during myocardial infarction was tested in male dogs. Two groups were studied: vehicle- (n=10) and acetaminophen-treated (n=10) dogs. All dogs were obtained from the same vendor, and there were no significant differences in their ages (18 +/- 2 mo), weights (24 +/- 1 kg), or housing conditions. Selected physiological data, e.g., coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, left ventricular developed pressure, the maximal first derivative of left ventricular developed pressure, blood gases, and pH, were collected at baseline and during regional myocardial ischemia and reperfusion. There were no significant differences in coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, or blood gases and pH between the two groups at any of the three time intervals, even though there was a trend toward improved function in the presence of acetaminophen. Infarct size, the main objective of the investigation, was markedly and significantly reduced by acetaminophen. For example, when expressed as a percentage of ventricular wet weight, infarct size was 8 +/- 1 versus 3 +/- 1%(P <0.05) in vehicle- and acetaminophen-treated hearts, respectively. When infarct size was expressed as percentage of the area at risk, it was 35 +/- 3 versus 13 +/- 2% (P <0.05) in vehicle- and acetaminophen-treated groups, respectively. When area at risk was expressed as percentage of total ventricular mass, there were no differences in the two groups. Results reveal that the recently reported cardioprotective properties of acetaminophen in vitro can now be extended to the in vivo arena. They suggest that it is necessary to add acetaminophen to the growing list of pharmaceuticals that possess cardioprotective efficacy in mammals.  相似文献   

8.
Ischemia of active skeletal muscle evokes a powerful blood pressure-raising reflex termed the muscle metaboreflex (MMR). MMR activation increases cardiac sympathetic nerve activity, which increases heart rate, ventricular contractility, and cardiac output (CO). However, despite the marked increase in ventricular work, no coronary vasodilation occurs. Using conscious, chronically instrumented dogs, we observed MMR-induced changes in arterial pressure, CO, left circumflex coronary blood flow (CBF), and coronary vascular conductance (CVC) before and after alpha1-receptor blockade (prazosin, 100 microg/kg iv). MMR was activated during mild treadmill exercise by partially reducing hindlimb blood flow. In control experiments, MMR activation caused a substantial pressor response-mediated via increases in CO. Although CBF increased (+28.1 +/- 3.7 ml/min; P < 0.05), CVC did not change (0.45 +/- 0.05 vs. 0.47 +/- 0.06 ml x min(-1) x mmHg(-1), exercise vs. exercise with MMR activation, respectively; P > 0.05). Thus all of the increase in CBF was due to the increase in arterial pressure. In contrast, after prazosin, MMR activation caused a greater increase in CBF (+55.9 +/- 17.1 ml/min; P < 0.05 vs. control) and CVC rose significantly (0.59 +/- 0.08 vs. 0.81 +/- 0.17 ml x min(-1) x mmHg(-1), exercise vs. exercise with MMR activation, respectively; P < 0.05). A greater increase in CO also occurred (+2.01 +/- 0.1 vs. +3.27 +/- 1.1 l/min, control vs. prazosin, respectively; P < 0.05). We conclude that the MMR-induced increases in sympathetic activity to the heart functionally restrain coronary vasodilation, which may limit increases in ventricular function.  相似文献   

9.
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.  相似文献   

10.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

11.
Chronic, rapid ventricular pacing produces congestive heart failure in dogs. The objectives of this study were to determine whether or not (i) in vitro myocardial biochemical alterations reported for heart failure by volume or pressure overload also occurred with heart failure due to rate overload, and (ii) these biochemical alterations were related to relevant in vivo cardiac physiologic alterations. We compared 27 dogs that were paced to advanced heart failure with 21 sham-operated dogs. Dogs with heart failure had 55% lower left ventricular ejection fraction (22.5 +/- 7.6 vs. 50.5 +/- 5.1%) and cardiac index (81 +/- 22 vs. 178 +/- 48 mL.min-1.kg-1), 287% higher pulmonary capillary wedge pressure (27.5 +/- 6.8 vs. 7.1 +/- 3.4 mmHg; 1 mmHg = 133.3 Pa), and 64% greater left ventricular diastolic area (18.4 +/- 3.7 vs. 11.2 +/- 1.3 cm2) (all p less than 0.05). Dogs with heart failure also had (i) 69% lower norepinephrine (232 +/- 139 vs. 747 +/- 220 ng/g protein), (ii) 25-50% lower activities of myofibrillar Ca ATPase (0.188 +/- 0.026 vs. 0.253 +/- 0.051 U/mg myofibrils), sarcoplasmic reticulum Ca-transport ATPase (0.155 +/- 0.074 vs. 0.288 +/- 0.043 U/mg membrane), and the glycolytic enzyme phosphofructokinase (33.4 +/- 10.0 and 47.7 +/- 15.8 U/g), (iii) 32% higher activity of the beta-oxidation enzyme hydroxyacyl-CoA dehydrogenase (11.43 +/- 1.48 vs. 8.67 +/- 1.70 U/g), and (iv) 60% higher activity of Krebs cycle oxoglutarate dehydrogenase (2.89 +/- 0.77 vs. 1.81 +/- 0.95 U/g) (all p less than 0.05). No differences between groups were observed for isozyme patterns and ATPase activity of myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

13.

Background and Aim

Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats.

Methodology/Principal Findings

Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats.

Conclusion

IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.  相似文献   

14.

Background

Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H2S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H2S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF).

Methodology/Principal Findings

CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H2S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H2S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H2S level in the PVN in both sham-operated rats and CHF rats.

Conclusions

Exogenous H2S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H2S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.  相似文献   

15.
The reflex regulation of sympathetic nerve activity has been demonstrated to be impaired in the chronic heart failure (CHF) state compared with the normal condition (Liu JL, Murakami H, and Zucker IH. Circ Res 82: 496-502, 1998). Exercise training (Ex) appears to be beneficial to patients with CHF and has been shown to reduce sympathetic outflow in this disease state (Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, and Schuler G. J Am Coll Cardiol 35: 706-713, 2000). We tested the hypothesis that Ex corrects the reduced cardiopulmonary (CP) reflex response to volume expansion in the CHF state. Normal, normal with Ex, CHF, and CHF with Ex (CHF-Ex) groups (n = 10-21) of male New Zealand White rabbits were studied. CHF was induced by chronic ventricular pacing. Rabbits were instrumented to record left ventricular end-diastolic pressure (LVEDP), left ventricular end-diastolic diameter (LVEDD), and renal sympathetic nerve activity (RSNA). Experiments were carried out with the animals in the conscious state. Volume expansion was performed with 6% dextran in normal saline at a rate of 5 ml/min to approximately 20% of estimated plasma volume without any significant effect on mean arterial pressure being exhibited. The relationships between RSNA and LVEDP and between RSNA and LVEDD were determined by linear regression; the slopes served as an index of CP reflex sensitivity. Normal rabbits exhibited a CP reflex sensitivity of -8.4 +/- 1.5%delta RSNA/mmHg. This value fell to 0.0 +/- 1.3%delta RSNA/mmHg in CHF rabbits (P < 0.001). Ex increased CP reflex sensitivity to -5.0 +/- 0.7%delta RSNA/mmHg in CHF-Ex rabbits (P < 0.05 compared with CHF). A similar trend was seen when related to the change in LVEDD. Furthermore, resting RSNA expressed as a percentage of maximum RSNA in response to cigarette smoke was also normalized by Ex in rabbits with CHF. Ex had no effect on these parameters in normal rabbits. These data confirm an impairment of CP reflex sensitivity and sympathoexcitation in CHF vs. normal animals. Ex substantially restored both CP reflex sensitivity and baseline RSNA in CHF animals. Thus Ex beneficially affects reflex regulation in CHF, thereby lowering resting sympathetic nerve activity.  相似文献   

16.
We investigated the effects of diabetes mellitus and antioxidant treatment on the sensory and reflex function of cardiac chemosensory nerves in rats. Diabetes was induced by streptozotocin (STZ; 85 mg/kg ip). Subgroups of sham- and STZ-treated rats were chronically treated with an antioxidant, vitamin E (60 mg/kg per os daily, started 2 days before STZ). Animals were studied 6-8 wk after STZ injection. We measured renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MABP), and cardiac vagal and sympathetic afferent activities in response to stimulation of chemosensitive sensory nerves in the heart by epicardial application of capsaicin (Caps) and bradykinin (BK). In cardiac sympathetic-denervated rats, Caps and BK (1-10.0 microg) evoked a vagal afferent mediated reflex depression of RSNA and MABP, which was significantly blunted in STZ-treated rats (P < 0.05). In vagal-denervated rats, Caps and BK (1-10.0 microg) evoked a sympathetic afferent-mediated reflex elevation of RSNA and MABP, which also was significantly blunted in STZ-treated rats (P < 0.05). Chronic vitamin E treatment effectively prevented these cardiac chemoreflex defects in STZ-treated rats without altering resting blood glucose or hemodynamics. STZ-treated rats with insulin replacement did not exhibit impaired cardiac chemoreflexes. In afferent studies, Caps and BK (0.1 g-10.0 microg) increased cardiac vagal and sympathetic afferent nerve activity in a dose-dependent manner in sham-treated rats. These responses were significantly blunted in STZ-treated rats. Vitamin E prevented the impairment of afferent discharge to chemical stimulation in STZ rats. The following were concluded: STZ-induced, insulin-dependent diabetes in rats extensively impairs the sensory and reflex properties of cardiac chemosensitive nerve endings, and these disturbances can be prevented by chronic treatment with vitamin E. These results suggest that oxidative stress plays an important role in the neuropathy of this autonomic reflex in diabetes.  相似文献   

17.
Coronary blood flow (CBF) and myocardial oxygen consumption (MVO(2)) are reduced in dogs with pacing-induced congestive heart failure (CHF), which suggests that energy metabolism is downregulated. Because nitric oxide (NO) can inhibit mitochondrial respiration, we examined the effects of NO inhibition on CBF and MVO(2) in dogs with CHF. CBF and MVO(2) were measured at rest and during treadmill exercise in 10 dogs with CHF produced by rapid ventricular pacing before and after inhibition of NO production with N(G)-nitro-L-arginine (L-NNA, 10 mg/kg iv). The development of CHF was accompanied by decreases in aortic and left ventricular (LV) systolic pressure and an increase in LV end-diastolic pressure (25 +/- 2 mmHg). L-NNA increased MVO(2) at rest (from 3.07 +/- 0.61 to 4.15 +/- 0.80 ml/min) and during exercise; this was accompanied by an increase in CBF at rest (from 31 +/- 2 to 40 +/- 4 ml/min) and during exercise (both P < 0.05). Although L-NNA significantly increased LV systolic pressure, similar increases in pressure produced by phenylephrine did not increase MVO(2). The findings suggest that NO exerts tonic inhibition on respiration in the failing heart.  相似文献   

18.
Endothelin-1 secretion and sympathetic activation may play important role in cardiovascular pathophysiology. In vivo interactions between these systems are not defined. We aimed to study the electrophysiological and haemodynamic effects of simultaneous intracoronary endothelin-1 and intravenous isoproterenol infusions. 18 anaesthetised open chest dogs were studied after AV-ablation. Mean arterial blood pressure, coronary blood flow, left ventricular contractility, standard electrocardiograms, right and left ventricular epi- and endocardial monophasic action potential (MAP) signals were recorded. Intracoronary endothelin-1 (30 pmol/min) was given to Group ET (n=6), intravenous isoproterenol (0.2 microg/kg/min) to Group ISO (n=6), both endothelin-1 and isoproterenol to Group ET+ISO (n=6) for 30 min. MAP duration increased in all studied regions of Group ET, decreased in all studied regions of Group ISO and ET+ISO (control vs. maximal changes of left ventricular epicardial MAP 90% duration, Group ET: 296+/-22 vs 369+/-20 ms, p<0.05, Group ISO: 298+/-18 vs 230+/-27 ms, p<0.01, Group ET+ISO: 302+/-18 vs 231+/-10 ms, p<0.01). In Group ET, early after depolarisations (3/6), polymorphic non-sustained ventricular tachycardias (6/6), and ventricular fibrillation (3/6) could be observed. In Group ISO, monomorphic non-sustained ventricular tachycardias (5/6) and atrial fibrillation (3/6) appeared. In Group ET+ISO, mono- and polymorphic non-sustained ventricular tachycardias occurred (5/6), neither ventricular fibrillation nor atrial fibrillation developed. An additive effect of endothelin-1 and isoproterenol on left ventricular contractility was observed. Isoproterenol treatment showed antagonistic effect against endothelin-1 induced MAP duration prolongation, early after depolarisation and ventricular fibrillation formation, while endothelin-1 showed protective effect against the development of isoproterenol induced atrial fibrillation.  相似文献   

19.
Left ventricular (LV) end-diastolic pressure (LVEDP) increase due to volume expansion (VExp) enhances mechanosensitive vagal cardiac afferent C-fiber activity (CNFA), thus decreasing renal sympathetic nerve activity (RSNA). Hypotensive hemorrhage (hHem) attenuates RSNA despite decreased LVEDP. We hypothesized that CNFA increases with any change in LVEDP. Coronary perfusion pressure (CPP), supposedly affected in both conditions, might also be a stimulus of CNFA. VExp and hHem were performed in anesthetized male Sprague-Dawley rats while blood pressure, heart rate, and RSNA were measured. Cervical vagotomy abolished RSNA response in both reflex responses. Single-unit CNFA was recorded while LVEDP was changed. Rapid changes (+/- 4, +/-6, +/-8 mmHg) were obtained by graded occlusion of the caval vein and descending aorta. Prolonged changes were obtained by VExp and hHem. Furthermore, CNFA was recorded in a modified Langendorff heart while CPP was changed (70, 100, 40 mmHg). Rapid LVEDP changes increased CNFA [caval vein occlusion: +16 +/- 3 Hz (approximately +602%); aortic occlusion: +15 +/- 3 Hz (approximately +553%); 70 units; P < 0.05]. VExp and hHem (n = 6) increased CNFA [VExp: +10 +/- 4 Hz (approximately +1,033%); hHem: +10 +/- 2 Hz (approximately +1,225%); P < 0.05]. An increase in CPP increased CNFA [+2 +/- 1 Hz (approximately +225%); P < 0.05], whereas a decrease in CPP decreased CNFA [-0.8 +/- 0.4 Hz (approximately -50%); P < 0.05]. All C fibers recorded originated from the LV. CNFA increased with any LVEDP change but changed equidirectionally with CPP. Thus neither LVEDP nor CPP fully accounts directly for afferent C-fiber and reflex sympathetic responses. The intrinsic afferent stimuli and receptive fields accounting for reflex sympathoinhibition still remain cryptic.  相似文献   

20.
Gan XB  Duan YC  Xiong XQ  Li P  Cui BP  Gao XY  Zhu GQ 《PloS one》2011,6(10):e25784

Background

Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF.

Methodology/Principal Findings

Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats.

Conclusions

The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号