首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that foreign bodies in airways cause inflammation leading to goblet cell metaplasia. Instilled agarose plugs lodged in the bronchi of pathogen-free rats caused a time-dependent increase in Alcian blue-periodic acid-Schiff staining that was detected within 24 h and markedly increased at 72 h. Control bronchi contained no pregoblet or goblet cells, but plugged bronchi contained many pregoblet and goblet cells and a decrease in nongranulated secretory cells. In situ hybridization showed no expression of MUC5AC in control airways, but plugged airways showed a marked expression. Control bronchi showed sparse staining for epidermal growth factor receptor (EGFR) protein, but plugged bronchi showed intense EGFR staining in the epithelium. Pretreatment with an EGFR tyrosine kinase inhibitor (BIBX1522) prevented Alcian blue-periodic acid-Schiff staining and MUC5AC gene expression in plugged bronchi. Pretreatment with tumor necrosis factor-alpha neutralizing antibody or pretreatment with cyclophosphamide abolished plug-induced EGFR protein expression and goblet cell metaplasia. Thus instillation of agarose plugs induces profound goblet cell metaplasia by causing EGFR expression and activation.  相似文献   

2.
The effect of urethan anesthesia on cigarette smoke-induced airway responsiveness and permeability was studied in the guinea pig. Airway responsiveness was determined by measuring changes to airway resistance to graded doses of aerosolized histamine, and mucosal permeability was determined by measuring the appearance of fluorescein isothiocyanate-dextran (FITC-D) in the blood and examining its distribution in lung tissue after it had been delivered to the lung in an aerosol. The results confirm previous studies that smoke exposure increased airway responsiveness and mucosal permeability. They also show that urethan anesthesia administered before smoke exposure prevented the smoke-related changes in airway reactivity and mucosal permeability. In animals that remained conscious during the smoke exposure, there was increased deposition of the dextran in the regions of the bronchioloalveolar junctions with a more rapid uptake of FITC-D into the blood. We postulate that, when urethan anesthesia is administered before smoke exposure, the exudative phase of the inflammatory reaction produced by smoke exposure is suppressed.  相似文献   

3.
Cigarette smoking, a major risk factor for chronic obstructive pulmonary disease, can cause airway inflammation, airway narrowing, and loss of elasticity, leading to chronic airflow limitation. In this report, we sought to define the signaling pathways activated by smoke and to identify molecules responsible for cigarette smoke-induced inflammation. We applied cigarette smoke water extract (CSE) to primary human lung fibroblasts and found that CSE significantly increased CXC chemokine IL-8 production. Meanwhile, 70-kDa heat shock protein (HSP70) was also induced by CSE in a dose- and time-dependent manner. CSE treatment stimulated HSP70 secretion by primary fibroblasts, which augmented IL-8 production. This was further confirmed by exogenously added recombinant HSP70. Using HSP70 small interfering RNA, we confirmed that CSE-induced chemokine production was dependent on heat shock protein expression. Further investigation showed that CSE could also stimulate early growth response-1 (EGR-1) in an ERK-dependent manner and that the expression of HSP70 was EGR-1 dependent. In view of these findings, we hypothesize that the MAPK-EGR-1-HSP70 pathway regulates the cigarette smoke-induced inflammatory process.  相似文献   

4.
5.
Although airway inflammation and airway hyperreactivity are observed after allergen inhalation both in allergic humans and animals, little is known about the mechanisms by which inflammatory cells can contribute to allergen-induced airway hyperreactivity. To understand how inflammatory cell infiltration can contribute to airway hyperreactivity, the location of these cells within the airways may be crucial Using a guinea pig model of acute allergic asthma, we investigated the inflammatory cell infiltration in different airway compartments at 6 and 24 h (i.e. after the early and the late asthmatic reaction, respectively) after allergen or saline challenge in relation to changes in airway reactivity (AR) to histamine. At 6 h after allergen challenge, a threefold (p < 0.01) increase in the AR to histamine was observed. At 24 h after challenge, the AR to histamine was lower, but still significantly enhanced (1.6-fold, p < 0.05). Adventitial eosinophil and neutrophil numbers in both bronchi and bronchioli were significantly increased at 6 h post-allergen provocation as compared with saline (p < 0.01 for all), while there was a strong tendency to enhanced eosinophils in the bronchial submucosa at this time point (p = 0.08). At 24h after allergen challenge, the eosinophilic and neutrophilic cell infiltration was reduced. CD3+ T lymphocytes were increased in the adventitial compartment of the large airways (p < 0.05) and in the parenchyma (p < 0.05) at 24h post-allergen, while numbers of CD8+ cells did not differ from saline treatment at any time point post-provocation. The results indicate that, after allergen provocation, inflammatory cell numbers in the airways are mainly elevated in the adventitial compartment. The adventitial inflammation could be important for the development of allergen-induced airway hyperreactivity.  相似文献   

6.
Bacterial infections of the lung are known to induce inflammatory responses, which lead to mucus hypersecretion. Moreover, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and its activation. Furthermore, matrix metalloproteinases (MMPs), especially MMP-9, have been reported to promote the transmigration of activated neutrophils. In this study, we investigated the associations between lipopolysaccharide (LPS)-induced goblet cell (GC) metaplasia and EGFR expression and the effects of MMP inhibitor (MMPI). Various concentrations of LPS were instilled into the tracheas of pathogen-free Sprague-Dawley rats, and airways were examined at different times after LPS instillation. To examine the role of MMP-9, we treated rats 3 days before LPS instillation and daily thereafter with MMPI. Neutrophilic infiltration, Alcian blue/periodic acid-Schiff (AB/PAS) staining, and immunohistochemical staining for MUC5AC, EGFR, and MMP-9 were performed. The instillation of LPS increased AB/PAS and MUC5AC staining in time- and dose-dependent manners, and treatment with MMPI significantly prevented GC metaplasia. The instillation of LPS into the trachea also induced neutrophilic infiltration and EGFR and MMP-9 expression in the airway epithelium, and MMPI was found to significantly prevent neutrophil recruitment, GC metaplasia, and EGFR and MMP-9 expression. This study demonstrates that the MMP-9 and EGFR cascades are associated with LPS-induced mucus hypersecretion.  相似文献   

7.
8.
Beta-adrenergic receptor (beta-AR) antagonists have been associated with increased airway reactivity in asthmatics and potentiation of contractile stimuli in animal models. In the present study, using an in vitro model of tracheal preparations from guinea pigs, we show that the beta-AR antagonists propranolol and pindolol induce a smooth muscle contraction. A prerequisite for this contraction is that the airway preparations have been pre-treated with an beta-AR agonist. Our data show that the contractile effect of beta-AR antagonists is not a simple consequence of reversing the agonist-induced relaxation. Furthermore, the effect seems to be mediated through interaction with beta2-ARs since the response is stereo-selective, and the selective beta1-AR receptor antagonist atenolol did not induce any contractile response. SQ 29,546, a thromboxane A2 antagonist; MK 886, a lipoxygenase inhibitor; and indomethacin, a cyclooxygenase inhibitor significantly inhibited the contractions of the tracheal preparations induced with propranolol or pindolol. We put forward the hypothesis that the contractile effect of the beta-AR antagonist is a consequence of their inverse agonist activity, which is only evident when the receptor population have a higher basal activity. Our results indicate a novel additional explanation for the known side effect, bronchoconstriction, of beta-AR antagonist.  相似文献   

9.
Electrical field stimulation (70 V, 1 ms, 0.2-500 Hz) of human bronchial strips and guinea pig tracheal chains produced contractile and relaxant responses. Contractions were blocked by atropine, 10(-6) M, and tetrodotoxin (TTX), 0.1-1.0 micrograms/ml, demonstrating a cholinergic excitatory neural component. Frequencies causing half-maximal contractile response to field stimulation (EFc 50) were 10 +/- 2 Hz for guinea pig and 13 +/- 1 Hz for human airways. Relaxations were unmasked by atropine 10(-6) M and slightly diminished by propranolol in guinea pig but not human airways, demonstrating a predominantly nonadrenergic inhibitory pathway in both species. Relaxation of intrinsic tone occurred at stimulation frequencies of 1 Hz or more. Frequencies causing half-maximal relaxation (EFi 50) were 3.5 +/- 0.3 Hz for guinea pig trachealis and 38 +/- 6 Hz for human bronchi. Following 1 microgram/ml TTX, EFi 50 values increased to 104 +/- 12 and 70 +/- 14 Hz, respectively. Frequencies of field stimulation that were inhibitable by TTX (less than or equal to 20 Hz) induced greater relaxation in guinea pig than human airways (70 vs. 10% of the maximal relaxation to 10(-2) M theophylline, respectively). The methods of analysis outlined in this study can be used to compare relative degrees of functional innervation between tissues from the same or different species.  相似文献   

10.
Periostin is a 90-kDa member of the fasciclin-containing family and functions as part of the extracellular matrix. Periostin is expressed in a variety of tissues and expression is increased in airway epithelial cells from asthmatic patients. Recent studies have implicated a role for periostin in allergic eosinophilic esophagitis. To further define a role for periostin in Th2-mediated inflammatory diseases such as asthma, we studied the development of allergic pulmonary inflammation in periostin-deficient mice. Sensitization and challenge of periostin-deficient mice with OVA resulted in increased peripheral Th2 responses compared with control mice. In the lungs, periostin deficiency resulted in increased airway resistance and significantly enhanced mucus production by goblet cells concomitant with increased expression of Gob5 and Muc5ac compared with wild type littermates. Periostin also inhibited the expression of Gob5, a putative calcium-activated chloride channel involved in the regulation of mucus production, in primary murine airway epithelial cells. Our studies suggest that periostin may be part of a negative-feedback loop regulating allergic inflammation that could be therapeutic in the treatment of atopic disease.  相似文献   

11.
The effects of platelet activating factor (PAF) and three its antagonists on the transmembrane intracellular potentials and stimulated (0.5 Hz) contraction amplitude (CA) of the left auricle has been studied. PAF (1-5 X 10(-7) M) was added to the standard Tyrode solution or the same perfusing solution with 15 mM K+, and 6 mM Ca++ (t = 30 degrees C, pH = 7,2). PAF induced the straight cardio-depressing action: the CA always was suppressed during 20 min. The electrical activity was depressed in parallel; in the Tyrode the action potential (AP) duration was lowered, but in the atrial depolarized preparations PAF resulted in a decrease of the slow calcium potential (Ca-AP) amplitude from 100% to 20.2 +/- 2.0%. After 20 min PAF-acting the perfusing solutions contained also one of PAF-antagonists. Antagonist U-66985 led to the weakening of the PAF-depressing effects in the myocardium U-66985 is also able to increase electrical and mechanical activity in myocardium depressed by the blood serum from patients with virulent infections.  相似文献   

12.
The effect of egg albumin (EA) challenge on tracheal tube preparations from sensitized guinea pigs was studied with regard to EA permeability, histamine release and penetrability, and the contractile response of the preparation. We used a plethysmographic method that allowed simultaneous measurement of changes in smooth muscle tension and collection of samples for determination of mediators. Our results clearly show that epithelial damage potentiates the contractile response to histamine, potassium ions, and acetylcholine. Epithelial damage did not alter the maximal contractile response in preparations challenged with high antigen concentrations (EA, 1 mg/ml), but histamine release measured in the perfusate increased substantially. The permeability of the preparations to EA was greater when the epithelium was damaged. No increase in the permeability in response to the EA challenge was observed. The present study has demonstrated that guinea pig airway epithelium constitutes a barrier for both antigen and drugs. We also present a method for recording contractile responses from intact whole tracheal preparations, in which the epithelium can still act as a barrier, as is the case in vivo.  相似文献   

13.
Opioid drugs have been shown to inhibit neurogenic plasma exudation in skin by a presynaptic mechanism. We determined whether a similar inhibitory effect operates in the airways of anesthetized guinea pigs in vivo with the use of Evans blue dye as a marker of plasma leakage. Stimulation of the vagus nerve significantly increased leakage of dye in trachea and main bronchi (by approximately 300 and 600%, respectively). Similar increases in leakage were seen in the presence of atropine and propranolol. Morphine (1-30 mg/kg iv) inhibited leakage in a dose-related manner with complete inhibition in the trachea at a dose of 30 mg/kg. The inhibition was blocked by the opioid receptor-antagonist naloxone (1 mg/kg iv). Intravenous substance P significantly increased leakage but was not inhibited by morphine. We conclude that morphine inhibits neurogenic plasma leakage by presynaptic inhibition of release of neuropeptides from sensory nerve endings. If similar mechanisms are operative in human airways, inhibition of neurogenic plasma leakage by opioid drugs devoid of central effects may be of value in the therapy of asthma.  相似文献   

14.
In the vagal-sensory system, neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) are synthesized nearly exclusively in small-diameter nociceptive type C-fiber neurons. By definition, these neurons are designed to respond to noxious or tissue-damaging stimuli. A common feature of visceral inflammation is the elevation in production of sensory neuropeptides. Little is known, however, about the physiological characteristics of vagal sensory neurons induced by inflammation to produce substance P. In the present study, we show that allergic inflammation of guinea pig airways leads to the induction of substance P and CGRP production in large-diameter vagal sensory neurons. Electrophysiological and anatomical evidence reveals that the peripheral terminals of these neurons are low-threshold Adelta mechanosensors that are insensitive to nociceptive stimuli such as capsaicin and bradykinin. Thus inflammation causes a qualitative change in chemical coding of vagal primary afferent neurons. The results support the hypothesis that during an inflammatory reaction, sensory neuropeptide release from primary afferent nerve endings in the periphery and central nervous system does not require noxious or nociceptive stimuli but may also occur simply as a result of stimulation of low-threshold mechanosensors. This may contribute to the heightened reflex physiology and pain that often accompany inflammatory diseases.  相似文献   

15.
We have investigated whether prejunctional inhibitory muscarinic receptors ("autoreceptors") exist on cholinergic nerves in human airways in vitro and whether guinea pig trachea provides a good model for further pharmacological characterization of these receptors. Pilocarpine was used as a selective agonist and gallamine as a selective antagonist of these autoreceptors. Acetylcholine (ACh) release from postganglionic cholinergic nerves was elicited by electrical field stimulation (EFS) (40 V, 0.5 ms, 32 Hz). In human bronchi, pilocarpine inhibited the contractile response to EFS in a dose-related fashion; the dose inhibiting 50% of the control contraction was 2.2 +/- 0.4 x 10(-7) (SE) M (n = 22), and the inhibition was 96% at 3 x 10(-5) M. The inhibitory effects of pilocarpine were antagonized by gallamine in a dose-related fashion. The results were qualitatively the same in the guinea pig. Gallamine significantly enhanced the contractile response to EFS in the guinea pig, whereas pirenzepine failed to do so, which suggests that M2-receptors are involved. We conclude that prejunctional muscarinic receptors that inhibit ACh release are present on cholinergic nerves in human airways and that guinea pig trachea is a good model for further pharmacological characterization of these receptors, which appear to belong to the M2-subtype.  相似文献   

16.
Goblet cell metaplasia and mucus hypersecretion are important features in the pathogenesis of asthma. The cytokine IL-4 has been shown to play a role in animal models of asthma, where it induces Th2 lymphocyte differentiation and B lymphocyte IgE class switch. IL-4 has also been implicated in the differentiation of goblet cells via effects on lymphocytes and eosinophils. In this study we hypothesized that IL-4 induces airway epithelial cell mucin gene expression and mucous glycoconjugate production by direct action on these cells. In vitro, cultured airway epithelial cells (NCI-H292) expressed IL-4R constitutively, and IL-4 (10 ng/ml) induced MUC2 gene expression and mucous glycoconjugate production. In vivo, mouse airway epithelial cells expressed IL-4R constitutively, and IL-4 (250 ng) increased MUC5 gene expression and Alcian blue/periodic acid-Schiff-positive staining at 24 h; IL-4 did not increase inflammatory cell numbers in airway tissue or in bronchoalveolar lavage. TNF-alpha and IL-1beta levels in bronchoalveolar lavage were not increased in response to IL-4 instillation. These results indicate that airway epithelial cells express IL-4R constitutively and that IL-4 directly induces the differentiation of epithelium into mucous glycoconjugate-containing goblet cells.  相似文献   

17.
Effects of a thromboxane A2 receptor antagonist (S-1452) on bronchoconstriction induced by inhaled leukotriene C4 and a leukotriene receptor antagonist (AS-35) on bronchoconstriction caused by inhalation of a thromboxane A2 mimetic (STA2) were studied in anesthetized, artificially ventilated guinea pigs in order to examine the interaction of thromboxane A2 and leukotrienes in airways. 0.01-1.0 mu g/ml of leukotriene C4 and 0.1-1.0 mu g/ml of STA 2 inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at the airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with inhaled S-1452 (0.01, 0.033 mg/ml) significantly reduced the airway responses produced by 0.01,0.033,0.1,0.33 and 1.0 mu g/ml of leukotriene C4 in a dose dependent manner. While pretreatment with inhaled AS-35 (1mg) did not affect the STA2 dose-response curve. These findings suggest that leukotriene C4 activates thromboxane A2 generation while thromboxane A2 does not influence 5-lipoxygenase pathway in the airways.  相似文献   

18.
Our recent in vitro results [4] indicate that cigarette smoke induces oxidation of human plasma proteins and extensive oxidative degradation of the guinea pig lung, heart, and liver microsomal proteins, which is almost completely prevented by ascorbic acid. In this paper, we substantiate the in vitro results with in vivo observations. We demonstrate that exposure of subclinical or marginal vitamin C-deficient guinea pigs to cigarette smoke causes oxidation of plasma proteins as well as extensive oxidative degradation of the lung microsomal proteins. Cigarette smoke exposure also results in some discernible damage of the heart microsomal proteins. The oxidative damage has been manifested by SDS-PAGE, accumulation of carbonyl and bityrosine, as well as loss of tryptophan and protein thiols. Cigarette smoke exposure also induces peroxidation of microsomal lipids as evidenced by the formation of conjugated dienes, malondialdehyde, and fluorescent pigment. Cigarette smoke-induced oxidative damage of proteins and peroxidation of lipids are accompanied by marked drop in the tissue ascorbate levels. Protein damage and lipid peroxidation are also observed in cigarette smoke-exposed pair-fed guinea pigs receiving 5 mg vitamin C/animal/day. However, complete protection against protein damage and lipid peroxidation occurs when the guinea pigs are fed 15 mg vitamin C/animal/day. Also, the cigarette smoke-induced oxidative damage of proteins and lipid is reversed after discontinuation of cigarette smoke exposure accompanied by ascorbate therapy. The results, if extrapolated to humans, indicate that comparatively large doses of vitamin C may protect the smokers from cigarette smoke-induced oxidative damage and associated degenerative diseases.  相似文献   

19.
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.  相似文献   

20.
The therapeutic potential of stem cells in chronic obstructive pulmonary disease is not well known although stem cell therapy is effective in models of other pulmonary diseases. We tested the capacities of bone marrow cells (BMCs), mesenchymal stem cells (MSCs), and conditioned media of MSCs (MSC-CM) to repair cigarette smoke-induced emphysema. Inbred female Lewis rats were exposed to cigarette smoke for 6 mo and then received BMCs, MSCs, or MSC-CM from male Lewis rats. For 2 mo after injection, the BMC treatment gradually alleviated the cigarette smoke-induced emphysema and restored the increased mean linear intercept. The BMC treatment significantly increased cell proliferation and the number of small pulmonary vessels, reduced apoptotic cell death, attenuated the mean pulmonary arterial pressure, and inhibited muscularization in small pulmonary vessels. However, only a few male donor cells were detected from 1 day to 1 mo after BMC administration. The MSCs and cell-free MSC-CM also induced the repair of emphysema and increased the number of small pulmonary vessels. Our data show that BMC, MSCs, and MSC-CM treatment repaired cigarette smoke-induced emphysema. The repair activity of these treatments is consistent with a paracrine effect rather than stem cell engraftment because most of the donor cells disappeared and because cell-free MSC-CM also induced the repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号