首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To elucidate the role and mechanism of action of interleukin (IL)-10 in regulating airway smooth muscle (ASM) responsiveness in the atopic asthmatic state, isolated rabbit tracheal ASM segments were passively sensitized with serum from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects in both the absence and presence of an anti-IL-10 receptor blocking antibody (Ab). Relative to control ASM, atopic asthmatic serum-sensitized tissues exhibited enhanced isometric constrictor responses to administered acetylcholine and attenuated the relaxation responses to isoproterenol. These proasthmatic effects were prevented in atopic asthmatic serum-sensitized ASM that was pretreated with anti-IL-10 receptor Ab. In complementary experiments, exposure of cultured human ASM cells to atopic asthmatic serum induced upregulated expression of IL-10 mRNA. Moreover, extended studies demonstrated that 1) exogenous IL-10 administration to naive ASM elicited augmented contractility to acetylcholine and impaired relaxation to isoproterenol, 2) these effects of IL-10 were prevented by pretreating the tissues with an IL-5 receptor Ab, and 3) IL-10 administration induced upregulated mRNA expression and release of IL-5 protein from cultured ASM cells. Collectively, these findings provide new evidence demonstrating that the altered responsiveness of atopic asthmatic serum-sensitized ASM is largely attributed to activation of an intrinsic T helper type 2-type autocrine mechanism involving IL-10-mediated release and the action of IL-5 in the sensitized ASM itself.  相似文献   

2.
Cell adhesion molecules (CAMs) have been importantly implicated in the pathobiology of the airway responses in allergic asthma, including inflammatory cell recruitment into the lungs and altered bronchial responsiveness. To elucidate the mechanism of CAM-related mediation of altered airway responsiveness in the atopic asthmatic state, the expressions and actions of intercellular adhesion molecule-1 (ICAM-1) and its counterreceptor ligand lymphocyte function-associated antigen-1 (LFA-1; i.e., CD11a/CD18) were examined in isolated rabbit airway smooth muscle (ASM) tissues and cultured human ASM cells passively sensitized with sera from atopic asthmatic patients or nonatopic nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with a monoclonal blocking antibody (MAb) to either ICAM-1 or CD11a, whereas a MAb directed against the related beta(2)-integrin Mac-1 had no effect. Moreover, relative to control tissues, atopic asthmatic sensitized ASM cells displayed an autologously upregulated mRNA and cell surface expression of ICAM-1, whereas constitutive expression of CD11a was unaltered. Extended studies further demonstrated that 1) the enhanced expression and release of soluble ICAM-1 by atopic sensitized ASM cells was prevented when cells were pretreated with an interleukin (IL)-5-receptor-alpha blocking antibody and 2) administration of exogenous IL-5 to naive (nonsensitized) ASM cells induced a pronounced soluble ICAM-1 release from the cells. Collectively, these observations provide new evidence demonstrating that activation of the CAM counterreceptor ligands ICAM-1 and LFA-1, both of which are endogenously expressed in ASM cells, elicits autologously upregulated IL-5 release and associated changes in ICAM-1 expression and agonist responsiveness in atopic asthmatic sensitized ASM.  相似文献   

3.
The airway responses to allergen exposure in allergic asthma are qualitatively similar to those elicited by specific viral respiratory pathogens, most notably rhinovirus (RV), suggesting that the altered airway responsiveness seen in allergic asthma and that elicited by viral respiratory tract infection may share a common underlying mechanism. To the extent that T helper cell type 2 (Th2) cytokines have been implicated in the pathogenesis of allergic asthma, this study examined the potential role(s) of Th2-type cytokines in mediating pro-asthmatic-like changes in airway smooth muscle (ASM) responsiveness after inoculation of naive ASM with human RV. Isolated rabbit ASM tissues and cultured human ASM cells were exposed to RV (serotype 16) for 24 h in the absence and presence of monoclonal blocking antibodies (MAbs) or antagonists directed against either the Th2-type cytokines interleukin (IL)-4 and IL-5, intercellular adhesion molecule (ICAM)-1 (the endogenous host receptor for most RVs), or the pleiotropic proinflammatory cytokine IL-1beta. Relative to control (vehicle-treated) tissues, RV-exposed ASM exhibited significantly enhanced isometric contractility to acetylcholine and impaired relaxation to isoproterenol. These pro-asthmatic-like changes in ASM responsiveness were ablated by pretreating the RV-exposed tissues with either IL-5-receptor-alpha blocking antibody or human recombinant IL-1-receptor antagonist, whereas IL-4 neutralizing antibody had no effect. Extended studies further demonstrated that inoculation of ASM cells with RV elicited 1) an increased mRNA expression and release of IL-5 protein, which was inhibited in the presence of anti-ICAM-1 MAb, and 2) an enhanced release of IL-1beta protein, which was inhibited in the presence of IL-5 receptor-alpha antibody. Collectively, these observations provide new evidence demonstrating that RV-induced changes in ASM responsiveness are largely attributed to ICAM-1-dependent activation of a cooperative autocrine signaling mechanism involving upregulated IL-5-mediated release of IL-1beta by the RV-exposed ASM itself.  相似文献   

4.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

5.
To examine the effects of glucocorticoid on rhinovirus (RV) infection, primary cultures of human tracheal epithelial cells were infected with either RV2 or RV14. Viral infection was confirmed by demonstrating that viral RNA in infected cells and viral titers of supernatants and lysates from infected cells increased with time. RV14 infection upregulated the expression of mRNA and protein of intercellular adhesion molecule-1 (ICAM-1), the major RV receptor, on epithelial cells, and it increased the production of interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor-alpha in supernatants. Dexamethasone reduced the viral titers of supernatants and cell lysates, viral RNA of infected cells, and susceptibility of RV14 infection in association with inhibition of cytokine production and ICAM-1 induction. In contrast to RV14 infection, dexamethasone did not alter RV2 infection, a minor group of RVs. These results suggest that dexamethasone may inhibit RV14 infection by reducing the surface expression of ICAM-1 in cultured human tracheal epithelial cells. Glucocorticoid may modulate airway inflammation via reducing the production of proinflammatory cytokines and ICAM-1 induced by rhinovirus infection.  相似文献   

6.
Microbial products serving as superantigens (SAgs) have been implicated in triggering various T cell-mediated chronic inflammatory disorders, including severe asthma. Given earlier evidence demonstrating that airway smooth muscle (ASM) cells express MHC class II molecules, we investigated whether ASM can present SAg to resting CD4(+) T cells, and further examined whether this action reciprocally elicits proasthmatic changes in ASM responsiveness. Coincubation of CD4(+) T cells with human ASM cells pulsed with the SAg, staphylococcal enterotoxin A (SEA), elicited adherence and clustering of class II and CD3 molecules at the ASM/T cell interface, indicative of immunological synapse formation, in association with T cell activation. This ASM/T cell interaction evoked up-regulated mRNA expression and pronounced release of the Th2-type cytokine, IL-13, into the coculture medium, which was MHC class II dependent. Moreover, when administering the conditioned medium from the SEA-stimulated ASM/T cell cocultures to isolated naive rabbit ASM tissues, the latter exhibited proasthmatic-like changes in their constrictor and relaxation responsiveness that were prevented by pretreating the tissues with an anti-IL-13 neutralizing Ab. Collectively, these observations are the first to demonstrate that ASM can present SAg to CD4(+) T cells, and that this MHC class II-mediated cooperative ASM/T cell interaction elicits release of IL-13 that, in turn, evokes proasthmatic changes in ASM constrictor and relaxant responsiveness. Thus, a new immuno-regulatory role for ASM is identified that potentially contributes to the pathogenesis of nonallergic (intrinsic) asthma and, accordingly, may underlie the reported association between microbial SAg exposure, T cell activation, and severe asthma.  相似文献   

7.
The ectoenzyme CD38 catalyzes synthesis and degradation of cyclic ADP ribose in airway smooth muscle (ASM). The proinflammatory cytokine TNFalpha, which enhances agonist-induced intracellular Ca(2+) ([Ca(2+)](i)) responses, has been previously shown to increases CD38 expression. In the present study, we tested the hypothesis that the effects of TNFalpha on CD38 expression vs. changes in [Ca(2+)](i) regulation in ASM cells are linked. Using isolated human ASM cells, CD38 expression was either increased (transfection) or knocked down [small interfering RNA (siRNA)], and [Ca(2+)](i) responses to sarcoplasmic reticulum depletion [i.e., store-operated Ca(2+) entry (SOCE)] were evaluated in the presence vs. absence of TNFalpha. Results confirmed that TNFalpha significantly increased CD38 expression and ADP-ribosyl cyclase activity, an effect inhibited by CD38 siRNA, but unaltered by CD38 overexpression. CD38 suppression blunted, whereas overexpression enhanced, ACh-induced [Ca(2+)](i) responses. TNFalpha-induced enhancement of [Ca(2+)](i) response to agonist was blunted by CD38 suppression, but enhanced by CD38 overexpression. Finally, TNFalpha-induced increase in SOCE was blunted by CD38 siRNA and potentiated by CD38 overexpression. Overall, these results indicate a critical role for CD38 in TNFalpha-induced enhancement of [Ca(2+)](i) in human ASM cells, and potentially to TNFalpha augmentation of airway responsiveness.  相似文献   

8.
Allergic processes are complex disorders in which inflammatory and immunological mechanisms are involved. Many studies indicate that the adhesion molecules are upregulated in allergic inflammation, and play a critical role in the pathogenesis of allergic inflammation. Modulation of the expression of adhesion molecules may provide a potential new target for therapeutic intervention in allergic diseases. In the present study the changes expression of adhesion molecules CD11a, CD18 (LFA-1), CD54 (ICAM-1) and L-selectin (CD62L) and VLA-4 (CD49d) were analysed by flow cytometry. Serum concentrations of soluble ICAM-1, VCAM-1 and soluble low affinity receptor for IgE concentrations sCD23 were measured by ELISA in atopic patients with mild asthma before and after treatment by disodium cromoglycate (DSCG). The most significant finding was a significant decrease of ICAM-1 expression on monocytes and CD49d on monocytes and lymphocytes as well as an increase of L-selectin expression on monocytes after treatment with DSCG, without any associated effect on CD11a and CD18. The levels of soluble ICAM-1 and VCAM-1 were not changed, only the levels of soluble CD23 that plays a regulatory role in ongoing IgE production, were decreased in asthmatic patients after the treatment with DSCG. These results suggest that DSCG diminishes cell activation.  相似文献   

9.
10.
Repeated Ag exposure results in a shift in the time course of contact hypersensitivity (CH) from a typical delayed-type to an immediate-type response followed by a late phase reaction. Chronic CH responses are clinically relevant to human skin allergic diseases, such as atopic dermatitis, that are usually caused by repeated stimulation with environmental Ags. Chronic inflammatory responses result in part from infiltrating leukocytes. To determine the role of leukocyte adhesion molecules in chronic inflammation, chronic CH responses were assessed in mice lacking L-selectin, ICAM-1, or both adhesion molecules. Following repeated hapten sensitization for 24 days at 2-day intervals, wild-type littermates developed an immediate-type response at 30 min after elicitation, followed by a late phase reaction. By contrast, loss of ICAM-1, L-selectin, or both, eliminated the immediate-type response and inhibited the late phase reaction. Similar results were obtained when wild-type littermates repeatedly exposed to hapten for 22 days were treated with mAbs to L-selectin and/or ICAM-1 before the elicitation on day 24. The lack of an immediate-type response on day 24 paralleled a lack of mast cell accumulation after 30 min of elicitation and decreased serum IgE production. Repeated Ag exposure in wild-type littermates resulted in increased levels of serum L-selectin, a finding also observed in atopic dermatitis patients. The current study demonstrates that L-selectin and ICAM-1 cooperatively regulate the induction of the immediate-type response by mediating mast cell accumulation into inflammatory sites and suggests that L-selectin and ICAM-1 are potential therapeutic targets for regulating human allergic reactions.  相似文献   

11.
Airflow obstruction in chronic airway disease is associated with airway and pulmonary vascular remodeling, of which the molecular mechanisms are poorly understood. Paracrine actions of angiogenic factors released by resident or infiltrating inflammatory cells following activation by proinflammatory cytokines in diseased airways could play a major role in the airway vascular remodeling process. Here, the proinflammatory cytokines interleukin (IL)-1β, and tumor necrosis factor (TNF)-α were investigated on cell cultures of human airway smooth muscle (ASM) for their effects on mRNA induction and protein release of the angiogenic peptide, vascular endothelial growth factor (VEGF). IL-1β (0.5 ng/mL) and TNF-α (10ng/mL) each increased VEGF mRNA (3.9 and 1.7 kb) expression in human ASM cells, reaching maximal levels between 16 and 24 and 4 and 8h, respectively. Both cytokines also induced a time-dependent release of VEGF, which was not associated with increased ASM growth. Preincubation of cells with 1μM dexamethasone abolished enhanced release of VEGF by TNF-α. The data suggest that human ASM cells express and secrete VEGF in response to proinflammatory cytokines and may participate in paracrine inflammatory mechanisms of vascular remodeling in chronic airway disease.  相似文献   

12.
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.  相似文献   

13.
Rhinovirus infection is the most common cause of acute exacerbations of inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease, where it provokes steroid refractory and abnormally intense neutrophilic inflammation that can be life threatening. Epidermal growth factor receptor (EGFR) expression correlates with disease severity and neutrophil infiltration in these conditions. However, the role of EGFR signaling in rhinovirus infection is unknown. We measured the key determinants of neutrophilic inflammation interleukin (IL)-8 and ICAM-1 in rhinovirus (RV16 serotype)-infected bronchial epithelial cells, BEAS-2B. RV16 infection stimulated IL-8 and ICAM-1 expression, which was further elevated (2-fold) by transient up-regulation of EGFR levels. Detection of viral RNA by quantitative real time PCR confirmed that enhanced expression was not associated with increased viral replication. EGFR ligands (epiregulin, amphiregulin, and heparin-binding epidermal growth factor) were induced by RV16 infection, and inhibition of metalloproteases responsible for ligand shedding partially suppressed this response. The EGFR inhibitor AG1478, completely blocked IL-8 and ICAM-1 expression to basal levels, as did the specific Erk1/2 inhibitor U0126. The p38 mitogen-activated protein kinase inhibitor SB203580 blocked IL-8 secretion but not ICAM-1 expression, whereas the PI3K inhibitor wortmannin was ineffective in both responses. Kinase inactive K721R EGFR, which is selectively deficient in STAT signaling, reversed RV16 responses associated with EGFR overexpression. In conclusion, RV16 infection rapidly promotes induction of EGFR ligands and utilizes EGFR signaling to increase IL-8 and ICAM-1 levels. These results suggest that targeting EGFR may provide a selective therapy that dampens neutrophil-driven inflammation without compromising essential antiviral pathways mediated by pathogen recognition receptors such as TLR3.  相似文献   

14.
15.
The hallmarks of chronic, severe asthma include prominent airway inflammation and airway smooth muscle (ASM) hypertrophy and hyperplasia. One of the factors that contribute to the injury and repair process within the airway is activation of proteases and turnover of extracellular matrix components. Mast cells, which are present in increased numbers in the asthmatic airway, are a rich source of the neutral protease chymase, which can degrade several basement membrane components. Recent data suggest that proteases also play a critical role in regulating the expression of CD44, the primary receptor for the matrix glycosaminoglycan hyaluronan. In this study we investigated the effects of chymase treatment on human ASM cell function. We found that chymase degraded the smooth muscle cell pericellular matrix. This was accompanied by an increased release of fibronectin and soluble CD44, but not soluble ICAM-1 or soluble hyaluronan, into the conditioned medium. In addition, chymase inhibited T cell adhesion to ASM and dramatically reduced epidermal growth factor-induced smooth muscle cell proliferation. These data suggest that the local release of mast cell chymase may have profound effects on ASM cell function and airway remodeling.  相似文献   

16.
HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H(2)O(2)-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE(-/-) and C57 Bl/6 mice. Treatment of ApoE(-/-) artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE(-/-) mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.  相似文献   

17.
Wang LF  Wu JT  Sun CC 《Cytokine》2002,19(3):147-152
Biphasic Th1/Th2 development plays a central role in the pathogenesis of atopic dermatitis. In the sensitization phase after protein antigen exposure, an immune response polarized toward Th2 differentiation, which is due to the hosts' genetic proneness to the disease, initiates the skin lesions. Th1/Th2 antagonism is a potential mechanism that could be manipulated to suppress the initial Th2 deviation. IL-12 is the key cytokine for Th1 differentiation. Interferon gamma (IFN-gamma) can assist Th1 development through several mechanisms and suppress Th2 differentiation. We took advantage of a recently developed murine model of atopic dermatitis elicited by epicutaneous sensitization with protein antigen through patch application to examine the effects of different routes of IFN-gamma administration on Th1/Th2 differentiation during the sensitization phase of antigen exposure. Our data showed that systemic administration of IFN-gamma during the sensitization phase could not promote serum levels of specific IgG(2a). However, local administration (intradermal injection or patch application) of IFN-gamma during the sensitization phase could promote serum levels of specific IgG(2a) and suppress serum levels of specific IgE. Moreover, pretreatment of local IFN-gamma with protein antigen has a long-term modulatory effect on serum levels of specific IgG(2a) and IgE after repeated antigen immunization. Our results demonstrate that local but not systemic administration of IFN-gamma during the sensitization phase of protein antigen immunization could suppress the Th2 deviation in this murine model of atopic dermatitis. Thus, this may represent a novel strategy for the treatment and prevention of atopic dermatitis.  相似文献   

18.
In this study, we report on the interferon-γ (IFN-γ) and interleukin-4 (IL-4) cytokine responses to phorbol myristate acetate (PMA)+ionomycin-stimulated CD3+ lymphocytes in asthmatic subjects when compared with normal donors. There was a significantly lower production of intracellular IFN-γ in asthmatic patients. No difference was found for IL-4 production between these two groups. After administration of a multivitamin-mineral supplement containing selenium, zinc, vitamin A, vitamin B6, vitamin C, and vitamin E for 6 mo, a significant increase in the percentage of CD3+/IL-4 positive cells (p<0.05) was found. The induction of endothelial cell adhesion molecule (CAM) expression in cultured human umbilical vein endothelial cells (HUVEC) and whole-blood mixture was studied using flow cytometry. The ICAM-1 and VCAM-1 expressions were higher in the patients than in control donors (p<0.05). There is a correlation between the increased percentage of CD3+/IFN-γ positive cells and reduced endothelial ICAM-1 and VCAM-1 expression after 6 mo of intervention period. No apparent effect of supplementation on CAM expression was found, suggesting that these changes do not arise from an antioxidant mechanism. This newly developed whole-blood technique for the assessment of CAM expression can be of use for monitoring therapy in inflammatory diseases.  相似文献   

19.
20.
CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation. We demonstrate that ex vivo allergen stimulation of bronchial biopsy tissue from mild atopic asthmatic, but not atopic nonasthmatic, subjects induced production of IL-5, IL-4, and IL-13. Explants from both study groups did not produce IFN-gamma, but secreted the chemokine RANTES without any overt stimulation. In addition to allergen, stimulation of asthmatic explants with mAbs to CD3 and TCR-alphabeta but not TCR-gammadelta induced IL-5 secretion. Allergen-induced IL-5 and IL-13 production by the asthmatic tissue was inhibited by anti-CD80 and, to a lesser extent, by anti-CD86 mAbs. In contrast, the production of these cytokines by PBMCs was not affected by mAbs to CD80, was inhibited by anti-CD86, and was strongly attenuated in the presence of both Abs. FACS analysis revealed that stimulated asthmatic bronchial tissue was comprised of CD4+ T cells that expressed surface CD28 (75. 3%) but little CTLA-4 (4.0%). Neutralizing mAbs to CD40 ligand had no effect on the cytokine levels produced by asthmatic tissue or PBMCs. Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production. In contrast, CD86 appears to be the principal costimulatory molecule required in PBMC responses. Attenuation of type 2 alphabeta T cell responses in the bronchial mucosa by blocking these costimulatory molecules may be of therapeutic potential in asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号