首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 +/- 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0 degrees C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased (P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 +/- 3 vs. 15 +/- 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: -1.4 +/- 3.8 vs. 21.2 +/- 3.0 and 19.9 +/- 3.6%; PWV: 5.6 +/- 0.2 vs. 6.5 +/- 0.3 and 6.2 +/- 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.  相似文献   

2.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

3.
Exercise markedly influences pulse wave morphology, but the mechanism is unknown. We investigated whether effects of exercise on the arterial pulse result from alterations in stroke volume or pulse wave velocity (PWV)/large artery stiffness or reduction of pressure wave reflection. Healthy subjects (n = 25) performed bicycle ergometry. with workload increasing from 25 to 150 W for 12 min. Digital arterial pressure waveforms were recorded using a servo-controlled finger cuff. Radial arterial pressure waveforms and carotid-femoral PWV were determined by applanation tonometry. Stroke volume was measured by echocardiography, and brachial and femoral artery blood flows and diameters were measured by ultrasound. Digital waveforms were recorded continuously. Other measurements were made before and after exercise. Exercise markedly reduced late systolic and diastolic augmentation of the peripheral pressure pulse. At 15 min into recovery, stroke volume and PWV were similar to baseline values, but changes in pulse wave morphology persisted. Late systolic augmentation index (radial pulse) was reduced from 54 +/- 3.9% at baseline to 42 +/- 3.7% (P < 0.01), and diastolic augmentation index (radial pulse) was reduced from 37 +/- 1.8% to 25 +/- 2.9% (P < 0.001). These changes were accompanied by an increase in femoral blood flow (from 409 +/- 44 to 773 +/- 48 ml/min, P < 0.05) and an increase in femoral artery diameter (from 8.2 +/- 0.4 to 8.6 +/- 0.4 mm, P < 0.05). In conclusion, exercise dilates muscular arteries and reduces arterial pressure augmentation, an effect that will enhance ventricular-vascular coupling and reduce load on the left ventricle.  相似文献   

4.
The interaction of sensory stressors with the cardiovascular response to blood loss has not been studied. The cardiovascular response to a stressor (i.e., the defense reaction) includes increased skeletal muscle blood flow and perhaps a reduction in arterial baroreflex function. Arterial pressure maintenance during blood loss requires baroreflex-mediated skeletal muscle vasoconstriction. Therefore, we hypothesized that the defense reaction would limit arterial pressure maintenance during blood loss. Male, New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood in conscious rabbits until mean arterial pressure decreased to <40 mmHg. We repeated the experiment with (air) and without (sham) simultaneous exposure to an air jet stressor. Air resulted in a defense reaction (e.g., mean arterial pressure = 94 +/- 1 and 67 +/- 1 mmHg for air and sham, respectively). Contrary to our hypothesis, air increased the blood loss necessary to produce hypotension (19.3 +/- 0.2 vs. 16.9 +/- 0.2 ml/kg for sham). Air did not reduce skeletal muscle vasoconstriction during normotensive hemorrhage. However, air did enhance renal vasoconstriction (97 +/- 3 and 59 +/- 3% of baseline for sham and air, respectively) during the normotensive phase. Thus the defense reaction did not limit but rather extended defense of arterial pressure during hemorrhage.  相似文献   

5.
A method for estimation of central arterial pressure based on linear one-dimensional wave propagation theory is presented in this paper. The equations are applied to a distributed model of the arterial tree, truncated by three-element windkessels. To reflect individual differences in the properties of the arterial trees, we pose a minimization problem from which individual parameters are identified. The idea is to take a measured waveform in a peripheral artery and use it as input to the model. The model subsequently predicts the corresponding waveform in another peripheral artery in which a measurement has also been made, and the arterial tree model is then calibrated in such a way that the computed waveform matches its measured counterpart. For the purpose of validation, invasively recorded abdominal aortic, brachial, and femoral pressures in nine healthy subjects are used. The results show that the proposed method estimates the abdominal aortic pressure wave with good accuracy. The root mean square error (RMSE) of the estimated waveforms was 1.61 +/- 0.73 mmHg, whereas the errors in systolic and pulse pressure were 2.32 +/- 1.74 and 3.73 +/- 2.04 mmHg, respectively. These results are compared with another recently proposed method based on a signal processing technique, and it is shown that our method yields a significantly (P < 0.01) lower RMSE. With more extensive validation, the method may eventually be used in clinical practice to provide detailed, almost individual, specific information as a valuable basis for decision making.  相似文献   

6.
The mechanisms by which obstructive apneas produce intermittent surges in arterial pressure remain poorly defined. To determine whether termination of obstructive apneas produce peripheral vasoconstriction, we assessed forearm blood flow during and after obstructive events in sleeping patients experiencing spontaneous upper airway obstructions. In all subjects, heart rate was monitored with an electrocardiogram and blood pressure was monitored continuously with digital plethysmography. In 10 patients (protocol 1), we used forearm plethysmography to assess forearm blood flow, from which we calculated forearm vascular resistance by performing venous occlusions during and after obstructive episodes. In an additional four subjects, we used simultaneous Doppler and B-mode images of the brachial artery to measure blood velocity and arterial diameter, from which we calculated brachial flow continuously during spontaneous apneas (protocol 2). In protocol 1, forearm vascular resistance increased 71% after apnea termination (29.3 +/- 15.4 to 49.8 +/- 26.5 resistance units, P < 0.05) with all patients showing an increase in resistance. In protocol 2, brachial resistance increased at apnea termination in all subjects (219.8 +/- 22.2 to 358.3 +/- 46.1 mmHg x l(-1) x min; P = 0.01). We conclude that termination of obstructive apneas is associated with peripheral vasoconstriction.  相似文献   

7.
The study of wave propagation at different points in the arterial circulation may provide useful information regarding ventriculoarterial interactions. We describe a number of hemodynamic parameters in the carotid, brachial, and radial arteries of normal subjects by using noninvasive techniques and wave-intensity analysis (WIA). Twenty-one normal adult subjects (14 men and 7 women, mean age 44 +/- 6 yr) underwent applanation tonometry and pulsed-wave Doppler studies of the right common carotid, brachial, and radial arteries. After ensemble averaging of the pressure and flow-velocity data, local hydraulic work was determined and a pressure-flow velocity loop was used to determine local wave speed. WIA was then applied to determine the magnitude, timings, and energies of individual waves. At all sites, forward-traveling (S) and backward-traveling (R) compression waves were observed in early systole. In mid- and late systole, forward-traveling expansion waves (X and D) were also seen. Wave speed was significantly higher in the brachial (6.97 +/- 0.58 m/s) and radial (6.78 +/- 0.62 m/s) arteries compared with the carotid artery (5.40 +/- 0.34 m/s; P < 0.05). S-wave energy was greatest in the brachial artery (993.5 +/- 87.8 mJ/m2), but R-wave energy was greatest in the radial artery (176.9 +/- 19.9 mJ/m2). X-wave energy was significantly higher in the brachial and radial arteries (176.4 +/- 32.7 and 163.2 +/- 30.5 mJ/m2, respectively) compared with the carotid artery (41.0 +/- 9.4 mJ/m2; P < 0.001). WIA illustrates important differences in wave patterns between peripheral arteries and may provide a method for understanding ventriculo-arterial interactions in the time domain.  相似文献   

8.

Background

Arterial pressure waveforms contain important diagnostic and physiological information since their contour depends on a healthy cardiovascular system [1]. A sensor was placed at the measured artery and some contact pressure was used to measure the pressure waveform. However, where is the location of the sensor just about enough to detect a complete pressure waveform for the diagnosis? How much contact pressure is needed over the pulse point? These two problems still remain unresolved.

Method

In this study, we propose a quantitative analysis to evaluate the pressure waveform for locating the position and applying the appropriate force between the sensor and the radial artery. The two-axis mechanism and the modified sensor have been designed to estimate the radial arterial width and detect the contact pressure. The template matching method was used to analyze the pressure waveform. In the X- axis scan, we found that the arterial diameter changed waveform (ADCW) and the pressure waveform would change from small to large and then back to small again when the sensor was moved across the radial artery. In the Z-axis scan, we also found that the ADCW and the pressure waveform would change from small to large and then back to small again when the applied contact pressure continuously increased.

Results

In the X- axis scan, the template correlation coefficients of the left and right boundaries of the radial arterial width were 0.987 ± 0.016 and 0.978 ± 0.028, respectively. In the Z-axis scan, when the excessive contact pressure was more than 100 mm Hg, the template correlation was below 0.983. In applying force, when using the maximum amplitude as the criteria level, the lower contact pressure (r = 0.988 ± 0.004) was better than the higher contact pressure (r = 0.976 ± 0.012).

Conclusions

Although, the optimal detective position has to be close to the middle of the radial arterial, the pressure waveform also has a good completeness with a template correlation coefficient of above 0.99 when the position was within ± 1 mm of the middle of the radial arterial range. In applying force, using the maximum amplitude as the criteria level, the lower contact pressure was better than the higher contact pressure.
  相似文献   

9.
To determine whether conduit artery size affects functional responses, we compared the magnitude, time course, and eliciting shear rate stimulus for flow-mediated dilation (FMD) in healthy men (n = 20; 31 +/- 7 yr). Upper limb (brachial and radial) and lower limb (common and superficial femoral) FMD responses were simultaneously assessed, whereas popliteal responses were measured in the same subjects during a separate visit. Glyceryl trinitrate (GTN)-mediated responses were similarly examined. Edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, were used to calculate conduit artery diameter, blood flow, and shear rate continuously across the cardiac cycle. Baseline artery size correlated inversely with the FMD response (r = -0.57, P < 0.001). Within-artery comparisons revealed a significant inverse correlation between artery size and FMD% for the radial (r = -0.66, P = 0.001), brachial (r = -0.55, P = 0.01), and popliteal artery (r = -0.48, P = 0.03), but not for the superficial and common femoral artery. Normalization of FMD responses for differences in eliciting shear rate did not abolish the between-artery relationship for artery function and size (r = -0.48, P < 0.001), suggesting that differences between artery function responses were not entirely due to size-related differences in shear rate. This was reinforced by a significant between-artery correlation for GTN responses and baseline artery size (r = -0.74, P < 0.001). In summary, systematic differences exist in vascular function responses of conduit arteries that differ in size. This raises the possibility that differences in artery size within or between individuals may influence functional responses.  相似文献   

10.
To demonstrate axial artery motion during the cardiac cycle, the common carotid arteries (CCA) of 10 pigs were exposed and equipped with piezoelectric crystals sutured onto the artery as axial position detectors. An echo-tracking system was used to simultaneously measure the CCA diameter. For each animal, data for pressure, length, and diameter were collected at a frequency of 457 Hz. At a mean pulse pressure of 33 +/- 8 mmHg, the mean systolodiastolic length difference was 0.3 +/- 0.01 mm for a mean arterial segment of 11.35 +/- 1.25 mm. Systolic and diastolic diameters were 4.1 +/- 0.3 and 3.9 +/- 0.2 mm, respectively. The examined CCA segment displayed a mean axial systolic shortening of 2.7%. This study clearly demonstrates, for the first time, that the length of a segment of the CCA changes during the cardiac cycle and that this movement is inversely correlated with pulse pressure. It is also apparent that the segmental axial strain is significantly smaller than the diameter variation during the cardiac cycle and that the impact of the axial strain for compliance computation should be further evaluated.  相似文献   

11.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

12.
Effects of a pulsating, half sine wave magnetic field (MF) with a frequency of 100 pps and 15 mT rms flux density, generated by the MD TEMF device (EMF Therapeutics, Inc., Chattanooga), on subjective pain rating, heart rate, and arterial blood pressure were tested in a double blind, crossover design study employing experimental muscle pain. Each of 24 healthy volunteers (12 females and 12 males, 24.7 +/- 3.2 years of age) received painful stimulation induced by the infusion of 5% hypertonic saline (HS) into the erector spinae muscle during real and sham MF exposure, in counterbalanced order. Exposure to MF differently affects subjective pain estimates in females and males. MF exposure increased averaged pain level and time integral of pain ratings in females, whereas no statistically significant difference for these characteristics was found in males. Pain related elevation of systolic and diastolic blood pressure was observed during both real and sham EMF exposure in female and male subjects.  相似文献   

13.
Previous results indicate that arterial pulse pressure modulates release of arginine vasopressin (AVP) in humans. The hypothesis was therefore tested that an increase in arterial pulse pressure is the stimulus for suppression of AVP release during central blood volume expansion by water immersion. A two-step immersion model (n = 8) to the xiphoid process and neck, respectively, was used to attain two different levels of augmented cardiac distension. Left atrial diameter (echocardiography) increased from 28 +/- 1 to 34 +/- 1 mm (P < 0.05) during immersion to the xiphoid process and more so (P < 0.05), to 36 +/- 1 mm, during immersion to the neck. During immersion to the xiphoid process, arterial pulse pressure (invasively measured in a brachial artery) increased (P < 0.05) from 44 +/- 1 to 51 +/- 2 mmHg and to the same extent from 42 +/- 1 to 52 +/- 2 mmHg during immersion to the neck. Mean arterial pressure was unchanged during immersion to the xiphoid process and increased during immersion to the neck by 7 +/- 1 mmHg (P < 0.05). Arterial plasma AVP decreased from 2.5 +/- 0.7 to 1.8 +/- 0.5 pg/ml (P < 0. 05) during immersion to the xiphoid process and significantly more so (P < 0.05), to 1.4 +/- 0.5 pg/ml, during immersion to the neck. In conclusion, other factors besides the increase in arterial pulse pressure must have participated in the graded suppression of AVP release, comparing immersion to the xiphoid process with immersion to the neck. We suggest that when arterial pulse pressure is increased, graded distension of cardiopulmonary receptors modulate AVP release.  相似文献   

14.
In this study the influence of acute (6 hr) exposure to 2450 MHz (CW) microwave radiation on certain cardiovascular, biochemical, and hematologic indices was examined in unanesthetized rats. Under methoxyflurane anesthesia, a catheter was inserted into the right femoral artery, which was used for monitoring blood pressure, heart rate, and blood sampling. Colonic temperature was monitored via a VITEK thermistor probe inserted rectally to a depth of 5 cm. The rat was subsequently placed into a ventilated restraining cage which was located inside an anechoic chamber. The temperature and humidity in the chamber were maintained at 22 +/- 0.5 degrees C and 60 +/- 5% (means +/- S.E.), respectively, during the experimental period. Rats (60) were exposed to either 0 (sham) or 10 mW/cm2 (exposed) for 6 hr. During exposure rats were oriented perpendicular to the E-field, and the measured specific absorption rate (SAR) was 3.7 mW/g. In the sham and exposed rats, the preexposure (time 0) mean +/- S.E. arterial blood pressure (MABP), heart rate, and colonic temperature were approximately 120 +/- 5 mmHg, 450 +/- 10 beats/min, and 37.0 +/- 0.2 degrees C, respectively. In the sham-exposed rats these values remained stable throughout the 6-hr exposure period. In the exposed rats, no effects were noted on MABP or colonic temperature; however after 1 hr of exposure, a significant reduction in heart rate was noted (450 versus 400 beats/min). This decrease in heart rate persisted throughout the remainder of the exposure period. None of the hematologic or biochemical parameters examined were affected by the microwave exposure. Although other mechanisms may be responsible, this decrease in heart rate may have been due to subtle cardiovascular adjustments because of microwave-induced heating with a resultant reduction in resting metabolic rate.  相似文献   

15.
We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.  相似文献   

16.
Flow-mediated dilation (FMD) has become a commonly applied approach for the assessment of vascular function and health, but methods used to calculate FMD differ between studies. For example, the baseline diameter used as a benchmark is sometimes assessed before cuff inflation, whereas others use the diameter during cuff inflation. Therefore, we compared the brachial artery diameter before and during cuff inflation and calculated the resulting FMD in healthy children (n=45; 10+/-1 yr), adults (n=31; 28+/-6 yr), and older subjects (n=22; 58+/-5 yr). Brachial artery FMD was examined after 5 min of distal ischemia. Diameter was determined from either 30 s before cuff inflation or from the last 30 s during cuff inflation. Edge detection and wall tracking of high resolution B-mode arterial ultrasound images was used to calculate conduit artery diameter. Brachial artery diameter during cuff inflation was significantly larger than before inflation in children (P=0.02) and adults (P<0.001) but not in older subjects (P=0.59). Accordingly, FMD values significantly differed in children (11.2+/-5.1% vs. 9.4+/-5.2%; P=0.02) and adults (7.3+/-3.2% vs. 4.6+/-3.3%; P<0.001) but not in older subjects (6.3+/-3.4% vs. 6.0+/-4.2%; P=0.77). When the diameter before cuff inflation was used, an age-dependent decline was evident in FMD, whereas FMD calculated using the diameter during inflation was associated with higher FMD values in older than younger adults. In summary, the inflation of the cuff significantly increases brachial artery diameter, which results in a lower FMD response. This effect was found to be age dependent, which emphasizes the importance of using appropriate methodology to calculate the FMD.  相似文献   

17.
The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.  相似文献   

18.
Extreme inactivity of the legs in spinal cord-injured (SCI) individuals does not result in an impairment of the superficial femoral artery flow-mediated dilation (FMD). To gain insight into the underlying mechanism, the present study examined nitric oxide (NO) responsiveness of vascular smooth muscles in controls and SCI subjects. In eight healthy men (34 +/- 13 yr) and six SCI subjects (37 +/- 10 yr), superficial femoral artery FMD response was assessed by echo Doppler. Subsequently, infusion of incremental dosages of sodium nitroprusside (SNP) was used to assess NO responsiveness. Peak diameter was examined on a second day after 13 min of arterial occlusion in combination with sublingual administration of nitroglycerine. Resting and peak superficial femoral artery diameter in SCI subjects were smaller than in controls (P < 0.001). The FMD response in controls (4.2 +/- 0.9%) was lower than in SCI subjects (8.2 +/- 0.9%, P < 0.001), but not after correcting for area under the curve for shear rate (P = 0.35). When expressed as relative change from baseline, SCI subjects demonstrate a significantly larger diameter increase compared with controls at each dose of SNP. However, when expressed as a relative increase within the range of diameter changes [baseline (0%) - peak diameter (100%)], both groups demonstrate similar changes in response to SNP. Changes in diameter during SNP infusion and FMD response are larger in SCI subjects compared with controls. When these results are corrected, superficial femoral artery FMD and NO sensitivity in SCI subjects are not different from those in controls. This illustrates the importance of appropriate data presentation and suggests that, subsequent to structural inward remodeling of conduit arteries as a consequence of extreme physical inactivity, arterial function is normalized.  相似文献   

19.
The aims of this study were to investigate (i) if and when the blood pressure would rise or fall and (ii) the associated changes of human heart rate variability (HRV) by manual stimulation of the Neiguan (PC 6) acupuncture site. In this paper, two groups of six healthy male volunteers with ranges of ages 20-56 and 20-55 and with no neurological diseases participated in this study. In order to minimize artefacts, the electrocardiogram (ECG) and radial arterial pulse pressure wave were collected with the subjects alert but eyes closed before, during, and after sham/manual acupuncture. No statistically significant changes (P > 0.05) were found in the sham acupuncture group. As for the manual acupuncture group, the needle was inserted into the PC 6 acupoint and manually stimulated about 15 to 30 seconds to achieve De Qi sensation. Needles were left in place for 30 min and then removed. Analysis of the data due to acupuncture was then compared with the baseline values. Results indicate that the blood pressures of different subject can either rise (P < 0.01) or fall (P < 0.01). To further determine the indicator for one subject who exhibited both rise and fall of blood pressures, 7 more trials were given conducted with the same protocol until statistically significant results were obtained (P < 0.01). We found that his change of blood pressure was highly correlated (p = -0.94 and -0.99 for rise and fall, respectively) with the ratio of the magnitude of pulse pressure to that of the dicrotic notch in the local radial pulse wave (P < 0.01). As to the heart rate variability (HRV) spectra, significant changes in the low frequency (LF) and very low frequency (VLF) ranges were also detected. These results indicate that the autonomic innervations of heart have been modified. However, the information on the power of LF, high frequency (HF), and LF/HF of HRV are not conclusive to statistically differentiate the sympathetic contribution from that of the parasympathetic nervous systems at present stage.  相似文献   

20.
Previous studies in skeletal muscle have shown a substantial (>100%) increase in venous vascular resistance with arterial pressure reduction to 40 mmHg, but a microcirculatory study showed no significant venular diameter changes in the horizontal direction during this procedure. To examine the possibility of venular collapse in the vertical direction, a microscope was placed horizontally to view a vertically mounted rat spinotrapezius muscle preparation. We monitored the diameters of venules (mean diameter 73. 8 +/- 37.0 microm, range 13-185 microm) oriented horizontally and vertically with a video system during acute arterial pressure reduction by hemorrhage. Our analysis showed small but significant (P < 0.0001) diameter reductions of 1.0 +/- 2.5 microm and 1.8 +/- 3. 1 microm in horizontally and vertically oriented venules, respectively, upon reduction of arterial pressure from 115.0 +/- 26. 3 to 39.8 +/- 12.3 mmHg. The venular responses were not different after red blood cell aggregation was induced by Dextran 500 infusion. We conclude that diameter changes in venules over this range of arterial pressure reduction are isotropic and would likely increase venous resistance by <10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号