首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung endothelial barrier dysfunction leads to severe pathologies, including the lethal Acute Respiratory Distress Syndrome. P53 has been associated with anti‐inflammatory activities. The current study employs a variety of unfolded protein response (UPR) activators and inhibitors to investigate the regulation of P53 by UPR in lung cells. The bovine cells that were exposed to the UPR inductors brefeldin A, dithiothreitol, and thapsigargin; demonstrated elevated expression levels of P53 compared to the vehicle‐treated cells. On the contrary, the UPR inhibitors N‐acetyl cysteine, kifunensine, and ATP‐competitive IRE1α kinase‐inhibiting RNase attenuator; produced the opposite effects. The outcomes of the present study reveal a positive regulation between UPR and P53. Since it has been shown that a mild induction of the unfolded protein response opposes inflammation, we suggest that P53 is involved in those protective activities in the lung.  相似文献   

2.
3.
4.
Interferons (IFNs) are antiviral cytokines that selectively regulate gene expression through several signaling pathways including nuclear factor kappaB(NFkappaB). To investigate the specific role of NFkappaB in IFN signaling, we performed gene expression profiling after IFN treatment of embryonic fibroblasts derived from normal mice or mice with targeted deletion of NFkappaB p50 and p65 genes. Interestingly, several antiviral and immunomodulatory genes were induced higher by IFN in NFkappaB knock-out cells. Chromatin immunoprecipitation experiments demonstrated that NFkappaB was basally bound to the promoters of these genes, while IFN treatment resulted in the recruitment of STAT1 and STAT2 to these promoters. However, in NFkappaB knock-out cells IFN induced STAT binding as well as the binding of the IFN regulatory factor-1 (IRF1) to the IFN-stimulated gene (ISG) promoters. IRF1 binding closely correlated with enhanced gene induction. Moreover, NFkappaB suppressed both antiviral and immunomodulatory actions of IFN against influenza virus. Our results identify a novel negative regulatory role of NFkappaB in IFN-induced gene expression and biological activities and suggest that modulating NFkappaB activity may provide a new avenue for enhancing the therapeutic effectiveness of IFN.  相似文献   

5.
Background

Management guidelines of chronic obstructive pulmonary disease (COPD) are mainly based on results of randomised controlled trials (RCTs), but some authors have suggested limited representativeness of patients included in these trials. No previous studies have applied the full range of selection criteria to a broad COPD patient population in a real-life setting.

Methods

We identified all RCTs of inhaled long-acting bronchodilator therapy, during 1999–2013, at ClinicalTrials.gov and translated trial selection criteria into definitions compatible with electronic medical records. Eligibility was calculated for each RCT by applying these criteria to a uniquely representative, well-characterised population of patients with COPD from the Optimum Patient Care Research Database (OPCRD).

Results

Median eligibility of 36 893 patients with COPD for participation in 31 RCTs was 23 % (interquartile range 12–38). Two studies of olodaterol showed the highest eligibility of 55 and 58 %. Conversely, the lowest eligibility was observed in two studies that required a history of exacerbations in the past year (3.5 and 3.9 %). For the patient subgroup with modified Medical Research Council score ≥2, the overall median eligibility was 27 %.

Conclusions

By applying an extensive range of RCT selection criteria to a large, representative COPD patient population, this study highlights that the interpretation of results from RCTs must take into account that RCT participants are variably, but generally more representative of patients in the community than previously believed.

  相似文献   

6.
7.
Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.  相似文献   

8.
9.
10.
11.
Pulmonary artery smooth muscle cell (PASMC) relaxation at birth results from an increase in cytosolic cGMP, cGMP-dependent and kinase-mediated activation of the Ca2+-sensitive K+ channel (KCa), and closure of voltage-operated Ca2+ channels (VOCC). How chronic intrauterine pulmonary hypertension compromises perinatal pulmonary vasodilation remains unknown. We tested the hypothesis that chronic intrauterine pulmonary hypertension selectively modifies gene expression to mitigate perinatal pulmonary vasodilation mediated by the cGMP kinase-KCa-VOCC pathway. PASMC were isolated from late-gestation fetal lambs that had undergone either ligation of the ductus arteriosus (hypertensive) or sham operation (control) at 127 days of gestation and were maintained under either hypoxic (approximately 25 Torr) or normoxic (approximately 120 Torr) conditions in primary culture. We studied mRNA levels for cGMP kinase Ialpha (PKG-1alpha), the alpha-chain of VOCC (Cav1.2), and the alpha-subunit of the KCa channel. Compared with control PASMC, hypertensive PASMC had decreased VOCC, KCa, and PKG-1alpha expression. In response to sustained normoxia, expression of VOCC and KCa channel decreased and expression of PKG-1alpha increased. In contrast, sustained normoxia had no effect on PKG-1alpha levels and an attenuated effect on VOCC and KCa channel expression in hypertensive PASMC. Protein expression of PKG-1alpha was consistent with the mRNA data. We conclude that chronic intrauterine pulmonary hypertension decreases PKG expression and mitigates the genetic effects of sustained normoxia on pulmonary vasodilation, because gene expression remains compromised even after sustained exposure to normoxia.  相似文献   

12.
Human alveolar macrophages have both lipopolysaccharide (LPS)-induced and constitutive phosphatidylinositol 3-kinase (PI3K) activity. We observed that blocking PI3K activity increased release of prostaglandin E2 after LPS exposure, and increasing PI3K activity (interleukin-13) decreased release of prostaglandin E2 after LPS exposure. This was not because of an effect of PI3K on phospholipase 2 activity. PI3K inhibition resulted in an increase in cyclooxygenase 2 (COX2) protein, mRNA, and mRNA stability. PI3K negatively regulated activation of the p38 pathway (p38, MKK3/6, and MAPKAP2), and an active p38 was necessary for COX2 production. The data suggest that PI3K inhibition of p38 modulates COX2 expression via destabilization of LPS-induced COX2 mRNA.  相似文献   

13.
In the hydrogen peroxide (H2O2) apoptosis model of the murine thymocyte, redox reactant and antioxidant pyruvate prevents programmed cell death. We tested the hypothesis that such protection was mediated, at least in part, via pyruvate handling by mitochondrial metabolism. Cultured bovine pulmonary artery endothelial cells were incubated for 30 min with 0.5 mM H2O2 in the absence and presence of 0.5 mM -cyano-3-hydroxycinnamate, as a selective inhibitor of the mitochondrial pyruvate transporter. In controls H2O2 decreased cell viability by 30% within 24 h; this was associated with apoptosis-like bodies, nuclear condensation, and biochemical DNA damage consistent with programmed cell death. Pyruvate (0.1–20 mM) enhanced cell viability in a dose-dependent manner, with 85% viable cells at 3 mM and no DNA laddering, no positive nick-end labeling (TUNEL), and no detectable Annexin V or propidium iodide staining. In contrast, using 5 mM L-lactate as a cytosolic reductant or acetate as a redox-neutral substrate, cell death increased to 40%, which was associated with intense DNA laddering, positive TUNEL and Hoechst 33258 assays. -Cyano-3-hydroxycinnamate alone did not significantly decrease endothelial viability but reduced viability from 85 ± 3 to 71 ± 4% (p = 0.023) in presence of 3 mM pyruvate plus H2O2; pathological cell morphology and DNA laddering under the same conditions suggested loss of pyruvate protection against apoptosis. Since -cyano-3-hydroxycinnamate re-distributed medium pyruvate and L-lactate consistent with selective blockade of pyruvate uptake into the mitochondria, the findings support the hypothesis that pyruvate protection against H2O2 apoptosis is mediated in part via the mitochondrial matrix compartment. Possible mediators include anti-apoptotic bcl-2 and/or products of mitochondrial pyruvate metabolism such as citrate that affect metabolic regulation and anti-oxidant status in the cytoplasm.  相似文献   

14.
15.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

16.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p less than 0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 microM for 5 min) or PGH2 (4 microM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 +/- 5% of 21% O2 exposure values, n = 6, p less than 0.01) or PGH2 (31 +/- 3% of 21% O2 exposure values, n = 6, p less than 0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

17.
18.
Although the function of the cell surface protein stem cell antigen-1 (Sca-1) has not been identified, expression of this molecule is a characteristic of bone marrow-derived hematopoietic stem cell populations. Expression of Sca-1, however, is not restricted to hematopoietic tissue. By RT-PCR and Western analysis, we found that Sca-1 is expressed in the adult mouse lung. Sca-1 immunohistochemistry revealed a linear staining pattern on the endothelial surface of large and small pulmonary arteries and veins and alveolar capillaries. Expression of Sca-1 in the pulmonary endothelium was confirmed by dual fluorescent microscopy on lung sections and by fluorescence-activated cell sorting analysis of digested lung tissue; each of these methods showed colocalization with the endothelial marker platelet/endothelial cell adhesion molecule-1. In the kidney, Sca-1 expression was also noted in large vessels, but, in contrast to the lung, was not observed in capillaries. Overall, our data indicate that Sca-1 expression helps define the surface phenotype of endothelial cells throughout the pulmonary vasculature.  相似文献   

19.
20.
To achieve efficient systemic gene delivery to the lung with minimal toxicity, a vector was developed by chemically conjugating a cationic polymer, polyethylenimine (PEI), with anti-platelet endothelial cell adhesion molecule (PECAM) antibody (Ab). Transfection of mouse lung endothelial cells with a plasmid expression vector with cDNA to luciferase (pCMVL) complexed with anti-PECAM Ab-PEI conjugate was more efficient than that with PEI-pCMVL complexes. Furthermore, the anti-PECAM Ab-PEI conjugate mediated efficient transfection at lower charge plus-to-minus ratios. Conjugation of PEI with a control IgG (hamster IgG) did not enhance transfection of mouse lung endothelial cells, suggesting that the cellular uptake of anti-PECAM Ab-PEI-DNA complexes and subsequent gene expression were governed by a receptor-mediated process rather than by a nonspecific charge interaction. Conjugation of PEI with anti-PECAM Ab also led to significant improvement in lung gene transfer to intact mice after intravenous administration. The increase in lung transfection was associated with a decrease compared with PEI-pCMVL with respect to circulating proinflammatory cytokine (tumor necrosis factor-alpha) levels. These results indicate that targeted gene delivery to the lung endothelium is an effective strategy to enhance gene delivery to the pulmonary circulation while simultaneously reducing toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号