首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17 beta-estradiol (E(2)beta), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E(2)beta attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E(2)beta. Finally, responses to S-nitroso-N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E(2)beta on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity.  相似文献   

2.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

3.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

4.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

5.
Previous studies have demonstrated that responses to endothelium-dependent vasodilators are absent in the aortas from mice deficient in expression of endothelial nitric oxide synthase (eNOS -/- mice), whereas responses in the cerebral microcirculation are preserved. We tested the hypothesis that in the absence of eNOS, other vasodilator pathways compensate to preserve endothelium-dependent relaxation in the coronary circulation. Diameters of isolated, pressurized coronary arteries from eNOS -/-, eNOS heterozygous (+/-), and wild-type mice (eNOS +/+ and C57BL/6J) were measured by video microscopy. ACh (an endothelium-dependent agonist) produced vasodilation in wild-type mice. This response was normal in eNOS +/- mice and was largely preserved in eNOS -/- mice. Responses to nitroprusside were also similar in arteries from eNOS +/+, eNOS +/-, and eNOS -/- mice. Dilation to ACh was inhibited by N(G)-nitro-L-arginine, an inhibitor of NOS in control and eNOS -/- mice. In contrast, trifluoromethylphenylimidazole, an inhibitor of neuronal NOS (nNOS), decreased ACh-induced dilation in arteries from eNOS-deficient mice but had no effect on responses in wild-type mice. Indomethacin, an inhibitor of cyclooxygenase, decreased vasodilation to ACh in eNOS-deficient, but not wild-type, mice. Thus, in the absence of eNOS, dilation of coronary arteries to ACh is preserved by other vasodilator mechanisms.  相似文献   

6.
Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation.  相似文献   

7.
8.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

9.
Late pregnancy in rats is characterized by a decrease in arterial pressure and in isolated arterial vessels response to vasoconstrictors. In uterine arteries the pregnancy-associated attenuation of the response to vasoconstrictors has been attributed to an increase in basal and agonist-induced endothelial NO production. However, the role of NO in pregnancy-associated changes of systemic arteries reactivity to vasoactive agents remains to be fully elucidated. We examined whether pregnancy influences the reactivity of systemic arteries to vasodilator or vasoconstrictor agents through NO-dependent mechanisms. Thoracic aortic rings and mesenteric arterial bed of late pregnant rats showed refractoriness to phenylephrine-induced vasoconstriction that was abolished by NO synthase inhibition. The potency of L-NNA to enhance tension of aortic rings preconstricted with phenylephrine (10–20% of their maximal response) was significantly lower in preparations from pregnant animals. In phenylephrine-contracted aortas and mesenteric bed, the effects of the endothelium-dependent vasodilators acetylcholine, A23187 and bradykinin, were not influenced by pregnancy. Similarly, pregnancy did not affect the vasodilator responses of adenosine, isoproterenol, capsaicin, nitroprusside, forskolin, and Hoe234 in the mesenteric bed. NO synthase activity measured by determining the conversion of L−[3H]-arginine to L−[3H]-citrulline in aorta and mesenteric arteries homogenates was not altered by pregnancy. These findings show that endothelial-dependent and -independent vasodilators action as well as NO synthase activity in systemic arteries is uninfluenced by pregnancy, whereas pregnancy-associated hyporeactivity of systemic arteries to vasoconstrictors is related to an enhanced endothelial NO production either spontaneous or elicited directly or indirectly by vasoconstrictor agents. This interpretation implies that the enhanced NO production observed in systemic arteries during late pregnancy involves cellular pathways other than the ones involved in the response to endothelium-dependent vasodilators such as acetylcholine.  相似文献   

10.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

11.
We tested the hypothesis that increased intraluminal shear stress induces endothelial nitric oxide (NO) synthase (eNOS) mRNA expression and improves endothelium-dependent dilation in senescent soleus muscle feed arteries (SFA) by increasing NO production. SFA were isolated from young (4 mo) and old (24 mo) male Fischer 344 rats and cannulated with two resistance-matched glass micropipettes. SFA were exposed to no flow (NF), low flow (LF), intermediate flow (IF), or high flow (HF) for 4 h. Mean intraluminal shear stress ranged from 0 to 82 dyn/cm(2). At the end of the 4-h treatment period, eNOS mRNA expression was assessed in each SFA. eNOS mRNA expression was significantly lower in old NF SFA than in young NF SFA. In old SFA, eNOS mRNA expression was induced by IF (+154%) and HF (+136%), resulting in a level of expression that was not different from that of young SFA. In a separate series of experiments, SFA were pretreated with NF or HF for 4 h, and endothelial function was assessed by examining vasodilator responses to ACh. ACh-induced dilation was less in old NF SFA than young NF SFA. Pretreatment with HF improved ACh-induced dilation in old SFA such that the response was similar to that of young SFA. In the presence of N(omega)-nitro-L-arginine to inhibit NOS, ACh-induced dilation was inhibited in old HF SFA such that the response was no longer greater than that of old NF SFA. These results indicate that increased intraluminal shear stress induces eNOS mRNA expression and improves endothelium-dependent dilation in senescent SFA by increasing NO production.  相似文献   

12.
13.
Objective: To investigate the effect of Iptakalim(Ipt) preventing injury of endothelial microvesicles(EMVs) derived from hypoxia/reoxygenation(H/R)-treated HUVECs on the relaxation of rat thoracic aortic rings and explore the underlying mechanism. Methods: H/R injury model was established to release H/R-EMVs from HUVECs. H/R-EMVs from HUVECs were isolated by ultracentrifugation from the conditioned culture medium. H/R-EMVs were characterized by using Transmission Electron Microscope(TEM). Thoracic aortic rings of rats were incubated with 10~(-7)-10~(-3 )mol/L Ipt and co-cultured with 10 μg/ml H/R-EMVs for 4 hours, and their endothelium- dependent relaxation in response to acetylcholine(ACh) was recorded in vitro. The nitric oxide(NO) production of ACh-treated rat thoracic aortic rings was measured by using Griess reagent. The expression of endothelial NO synthase(e NOS), phosphorylated e NOS(p-e NOS, Ser-1177), serine/threonine kinas(Akt) and phosphorylated Akt(p-Akt, Ser-473) in the thoracic aortic rings of rats was detected by Western blotting. Results: H/R-EMVs were induced by H/R-treated HUVECs and isolated by ultracentrifugation. The isolated H/R-EMVs subjected to TEM revealed small, rounded vesicles(100–1 000 nm) surrounded by a membrane. H/R-EMVs impaired relaxation induced by ACh of rat thoracic aortic rings significantly. Compared with H/R-EMVs treatment individually, relaxation and NO production of rat thoracic aortic rings were increased by Ipt treatment in a concentration-dependent manner(P0.05, P0.01). The expression of total e NOS(t-e NOS) and total Akt(t-Akt) was not affected by Ipt or H/R-EMVs. However, the expression of p-e NOS and p-Akt increased after treated with Ipt(P0.01). Conclusion: Based on H/R-EMVs treatment, ACh induced endothelium-dependent relaxation of rat thoracic aortic rings was ameliorated by Ipt in a concentration-dependent manner. The mechanisms involved the increase in NO production, p-e NOS and p-Akt expression.  相似文献   

14.
BackgroundPulmonary arterial hypertension (PAH), characterized by pulmonary artery constriction and vascular remodeling, has a high mortality rate. New drugs for the treatment of PAH urgently need to be developed.PurposeThis study was designed to investigate the vasorelaxant activity of OTNA in isolated pulmonary arteries, and explore its molecular mechanism.MethodsPulmonary arteries and thoracic aortas were isolated from mice, and vascular tone was tested with a Wire Myograph System. Nitric oxide levels were determined with DAF-FM DA and DAX-J2™ Red. Cellular thermal shift assays, microscale thermophoresis, and molecular docking were used to identify the interaction between OTNA and aryl hydrocarbon receptor (AhR). The levels of PI3K, p-PI3K, Akt, p-Akt, eNOS, p-eNOS, and AhR were analyzed by Western blotting.ResultsOTNA selectively relaxed the isolated pulmonary artery rings in an endothelium-dependent manner. Mechanistic study showed that OTNA induced NO production through activation of the PI3K/Akt/eNOS pathway in endothelial cells. Furthermore, we also found that OTNA directly bound to AhR and activated the PI3K/Akt/eNOS pathway to dilate pulmonary arteries by inhibiting AhR.ConclusionsOTNA relaxes pulmonary arteries by antagonizing AhR. This study provides a new natural antagonist of AhR as a promising lead compound for PAH treatment.  相似文献   

15.
The endothelial nitric oxide synthase (eNOS) requires tetrahydrobiopterin (H(4)B) as a cofactor and, in its absence, produces superoxide (O(2)(·-)) rather than nitric oxide (NO(·)), a condition referred to as eNOS uncoupling. DOCA-salt-induced hypertension is associated with H(4)B oxidation and uncoupling of eNOS. The present study investigated whether administration of sepiapterin or H(4)B recouples eNOS in DOCA-salt hypertension. Bioavailable NO(·) detected by electron spin resonance was markedly reduced in aortas of DOCA-salt hypertensive mice. Preincubation with sepiapterin (10 μmol/l for 30 min) failed to improve NO(·) bioavailability in hypertensive aortas while it augmented NO(·) production from control vessels, implicating a hypertension-associated deficiency in sepiapterin reductase (SPR), the rate-limiting enzyme for sepiapterin conversion to H(4)B. Indeed, a decreased SPR expression was observed in aortic endothelial cells, but not in endothelium-denuded aortic remains, implicating an endothelium-specific SPR deficiency. Administration of hypertensive aortas with H(4)B (10 μmol/l, 30 min) partially restored vascular NO(·) production. Combined administration of H(4)B and the NADPH oxidase inhibitor apocynin (100 μmol/l, 30 min) fully restored NO(·) bioavailability while reducing O(2)(·-) production. In angiotensin II-induced hypertension, however, aortic endothelial SPR expression was not affected. In summary, administration of sepiapterin is not effective in recoupling eNOS in DOCA-salt hypertension, due to an endothelium-specific loss in SPR, whereas coadministration of H(4)B and apocynin is highly efficient in recoupling eNOS. This is consistent with our previous observations that in angiotensin II hypertension, endothelial deficiency in dihydrofolate reductase is alternatively responsible for uncoupling of eNOS. Taken together, these data indicate that strategies specifically targeting at different H(4)B metabolic enzymes might be necessary in restoring eNOS function in different types of hypertension.  相似文献   

16.
In this study we analyzed the role of vascular NAD(P)H oxidase in the generation of O(2)(-) and the endothelial impairment of NO signal transduction pathway in hypertension. In aortic rings of 15-month-old stroke-prone spontaneously hypertensive rats (SHR15) we found a 10-fold increased expression of NAD(P)H oxidase subunit gp91phox mRNA associated with a 3-fold increased production of O(2)(-) compared to age-matched Wistar rats (WIS15). Vasorelaxation studies in aortas of SHR15 showed a strongly diminished response to acetylcholine, NO-donor S-nitroso-N-acetyl-d,l-penicillamine, and organic nitrate glyceryl trinitrate compared to WIS15. Soluble guanylate cyclase (sGC) activity and sGC beta(1)-subunit protein expression was downregulated in aortas and lungs of SHR15. These data suggest an upregulation of vascular NAD(P)H oxidase and an impairment of the NO signal transduction pathway in hypertension.  相似文献   

17.
Chronic hypoxia (CH) increases pulmonary arterial endothelial nitric oxide (NO) synthase (NOS) expression and augments endothelium-derived nitric oxide (EDNO)-dependent vasodilation, whereas vasodilatory responses to exogenous NO are attenuated in CH rat lungs. We hypothesized that reactive oxygen species (ROS) inhibit NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined responses to the EDNO-dependent vasodilator endothelin-1 (ET-1) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP) in isolated lungs from control and CH rats in the presence or absence of ROS scavengers under normoxic or hypoxic ventilation. NOS was inhibited in lungs used for SNAP experiments to eliminate influences of endogenously produced NO. Additionally, dichlorofluorescein (DCF) fluorescence was measured as an index of ROS levels in isolated pressurized small pulmonary arteries from each group. We found that acute hypoxia increased DCF fluorescence and attenuated vasodilatory responses to ET-1 in lungs from control rats. The addition of ROS scavengers augmented ET-1-induced vasodilation in lungs from both groups during hypoxic ventilation. In contrast, upon NOS inhibition, DCF fluorescence was elevated and SNAP-induced vasodilation diminished in arteries from CH rats during normoxia, whereas acute hypoxia decreased DCF fluorescence, which correlated with augmented reactivity to SNAP in both groups. ROS scavengers enhanced SNAP-induced vasodilation in normoxia-ventilated lungs from CH rats similar to effects of hypoxic ventilation. We conclude that inhibition of NOS during normoxia leads to greater ROS generation in lungs from both control and CH rats. Furthermore, NOS inhibition reveals an effect of acute hypoxia to diminish ROS levels and augment NO-mediated pulmonary vasodilation.  相似文献   

18.
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation.  相似文献   

19.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O(2)(*-)) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-L-arginine methyl ester (L-NAME) or the O(2)(*-) scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. L-NAME, the NO precursor L-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by L-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O(2)(*-) in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O(2)(*-) in response to ATP, and this was attenuated by the NOS antagonist L-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.  相似文献   

20.
Diesel exhaust particles cause an impairment of endothelium-dependent vasorelaxation and are associated with cardiopulmonary-related diseases and mortality, but the mechanistic details are poorly understood. Since we reported previously that phenanthraquinone, an environmental chemical contained in diesel exhaust particles, suppresses neuronal nitric oxide synthase (nNOS) activity by shunting electrons away from the normal catalytic pathway, it was hypothesized that phenanthraquinone inhibits endothelial NOS (eNOS) activity and affects vascular tone. Therefore, the effects of phenanthraquinone on eNOS activity, endothelium-dependent relaxation, and blood pressure were examined in the present study. Phenanthraquinone inhibited NO formation evaluated by citrulline formed by total membrane fraction of bovine aortic endothelial cells with an IC(50) value of 0.6 microM. A kinetic study revealed that phenanthraquinone is a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. Endothelium-dependent relaxation of rat aortic rings by ACh was significantly inhibited by phenanthraquinone (5 microM), whereas the endothelium-independent relaxation by nitroglycerin was not. Furthermore, an intraperitoneal injection of phenanthraquinone (0.36 mmol/kg) to rats resulted in an elevation of blood pressure (1.4-fold, P < 0.01); under this condition, plasma levels of stable NO metabolites, nitrite/nitrate, in phenanthraquinone-treated rats was reduced to 68% of control levels. The present findings suggest that phenanthraquinone has a potent inhibitory action on eNOS activity via a similar mechanism reported for nNOS, thereby causing the suppression of NO-mediated vasorelaxation and elevation of blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号