首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spotted knapweed (Centaurea stoebe) occurs from Western Asia to Western Europe both as diploid and tetraploid cytotypes, predominantly in single-cytotype populations with higher frequency of diploid populations. Interestingly, only tetraploids have been recorded so far from its introduced range in North America where they became highly invasive. We performed phylogenetic and network analyses of more than 40 accessions of the C. stoebe and C. paniculata groups and other related taxa using cloned internal transcribed spacer (ITS) and sequences of the chloroplast trnT-trnL and atpBrbcL regions to (i) assess the evolutionary origin of tetraploid C. stoebe s.l., and (ii) uncover the phylogeny of the C. stoebe group. Both issues have not been studied so far and thus remained controversial. Cloned ITS sequences showed the presence of two slightly divergent ribotypes occurring in tetraploid cytotype, while only one major ribotype was present in diploid C. stoebe s.str. This pattern suggests an allopolyploid origin of tetraploids with contribution of the diploid C. stoebe s.str. genome. Although we were not able to detect the second parental taxon, we hypothesize that hybridization might have triggered important changes in morphology and life history traits, which in turn may explain the colonization success of the tetraploid taxon. Bayesian relaxed clock estimations indicate a relatively recent--Pleistocene origin of the tetraploid C. stoebe s.l. Furthermore, our analyses showed a deep split between the C. paniculata and C. stoebe groups, and a young diversification of the taxa within the C. stoebe group. In contrast to nrDNA analyses, the observed pattern based on two cpDNA regions was inconclusive with respect to the origin and phylogeny of the studied taxa, most likely due to shared ancient polymorphism and frequent homoplasies.  相似文献   

2.
3.
Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to reconstruct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus. However, the ndhF data set is incongruent with the ITS data supporting two major groups within Prunus one consisting of subgenera Laurocerasus (including Pygeum) and Padus as well as the genus Maddenia and another of subgenera Amygdalus, Cerasus, and Prunus. The ITS data, on the other hand, support a clade composed of subgenera Amygdalus and Prunus and Prunus sect. Microcerasus in addition to a paraphyletic grade of subgenera Laurocerasus and Padus (and the genus Maddenia) taxa. In general, the subgeneric classifications of Prunus s.l. are not supported. The ITS and ndhF phylogenies differ mainly in interspecific relationships and the relative position of the Padus/Laurocerasus group. Both ITS and ndhF data sets suggest that the formerly recognized genus Pygeum is polyphyletic and that the distinction of the subgenera Padus and Laurocerasus is not supported. The biogeographic interactions of the temperate and tropical members in the Padus/Laurocera- sus/Maddenia alliance including Pygeum are shown to be highly dynamic and complex.  相似文献   

4.
The biogeographic history of Sium sensu lato (s.l.) (including Sium sensu stricto [s.s.], Afrocarum, and Berula) was inferred using a nuclear rDNA ITS sequence phylogeny and dispersal-vicariance analysis. One hundred accessions were analyzed, including 86 specimens of Sium s.l., representing all taxa throughout their geographical range. The phylogenetic analyses showed that Afrocarum and the African and St. Helena species of Sium were nested within Berula forming the Berula s.l. clade. The remaining species of Sium constituted a weakly supported Sium s.s. clade. The cultivated S. sisarum is closely related to the western Asian S. sisaroideum. The divergence of Sium s.s. from Berula s.l., estimated under the assumption of a molecular clock and using a substitution rate of 0.61% per million years, took place around 10.4 million years ago. Dispersal-vicariance analysis suggested that the biogeographic pattern of this group resulted from simple vicariance and eventual migration to adjacent areas rather than from long-distance dispersal. The ancestral area of Sium s.l. was probably western Palearctic. The dispersal of Berula to North America occurred ca. 3 million years ago, possibly by island hopping. The migration of S. suave to North America took place ca 0.6 million years ago through Beringia.  相似文献   

5.
Genotypic Diversity among Brazilian Isolates of Sclerotium rolfsii   总被引:1,自引:0,他引:1  
Thirty isolates of Sclerotium rolfsii Sacc. from different hosts and regions of Brazil were studied in relation to morphology, mycelial compatibility, analysis of genomic DNA through random amplified polymorphic DNA (RAPD), variation within the nuclear rDNA [internal transcribed spacers (ITS)] and sequencing of ITS fragments. There was considerable variability among isolates in relation to the number, size and location of sclerotia on the medium surface. Thirteen mycelial compatibility groups (MCG) were identified among 23 isolates. Seven isolates were only self‐compatible. With the exception of group 3, where all the isolates came from soybean, there was no apparent correlation between group and isolate origin. On the basis of RAPD profiles, 11 haplotypes (A to K) were identified. There was an association between the RAPD groups and MCG. Haplotypes A, B, D, G, I and K belonged to MCG groups 1, 2, 3, 4, 5 and 6, respectively. All other RAPD haplotypes contained incompatible isolates. Polymerase chain reaction (PCR) amplification with primers 4R and 5F amplified two fragments containing ITS1, ITS2 and 5.8 S rDNA sequences, that were present in all isolates, with molecular sizes of 739 and 715 bp. Restriction analysis of PCR products showed that the two fragments had sequence divergency which is referred to as ‘ITS types’. Four arbitrarily chosen soybean isolates (2, 6, 7 and 23) and two non‐soybean isolates (11 and 22) were used to investigate the variation within the ITS sequence and its role in the phylogeny. The strict consensus of nine most‐parsimonious trees inferred from the data set which included six isolates of S. rolfsii, four of which have two different ‘ITS types’, showed three well‐supported groupings. The neighbour‐joining tree inferred from the data set also showed three major clades as did the parsimony tree. The major difference was that in the neighbour‐joining tree the ‘ITS type’ 11 was resolved and grouped in one clade. These results show that the ‘ITS types’ within isolates are almost always phylogenetically distinct. There was no clear correlation between ITS‐based phylogeny and isolate origin.  相似文献   

6.
We present here the first molecular phylogeny of tribe Diseae (Orchidoideae: Orchidaceae). Nuclear ribosomal ITS1, 5.8S rDNA, and ITS2 sequences were compared for 30 Diseae, 20 Orchideae, and four Cranichideae and Diurideae outgroups. ITS - rDNA sequences exhibited a transition:transversion ratio of 1.3 and extensive ITS length polymorphism. Phylogenetic analyses using maximum parsimony identified seven major core orchidoid groups. The branching order of the five Diseae and two Orchideae clades was weakly supported but indicated paraphyly of Diseae, with Disperis sister to the rest, followed by successive divergence of Brownleea, Disinae, Coryciinae sensu stricto (s.s.), Satyriinae, and terminated by Orchidinae plus Habenariinae. Within the monophyletic Disinae, Herschelia and Monadenia were nested within a paraphyletic Disa and clustered with D. sect. Micranthae. Within monophyletic Satyriinae, Satyridium rostratum plus Satyrium bicallosum was sister to the rest of Satyrium, and then Satyrium nepalense plus S. odorum was distinct from a cluster of six species. Coryciinae are paraphyletic because Disperis is sister to all other core orchidoids. Coryciinae s.s. are sister to Satyriinae plus Orchideae, with Pterygodium nested within Corycium. Maximum likelihood analysis supported possible affinities among Disinae, Brownleeinae, and Coryciinae but did not support monophyly of Diseae or an affinity between Disinae and Satyriinae. Morphological characters are fully congruent with the well-supported groups identified in the ITS phylogeny.  相似文献   

7.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a species complex that is one of the most devastating agricultural pests worldwide and affects a broad range of food, fiber and ornamental crops. Unfortunately, using parsimony and neighbor joining methods, global phylogenetic relationships of the major races/biotypes of B. tabaci remain unresolved. Aside from the limitations of these methods, phylogenetic analyses have been limited to only small subsets of the global collection of B. tabaci, and thus limited taxon sampling has confounded the analyses. To improve our understanding of global B. tabaci phylogenetic relationships, a Bayesian phylogenetic technique was utilized to elucidate the relationships among all COI DNA sequence data available in GenBank for B. tabaci worldwide (366 specimens). As a result, the first well-resolved phylogeny for the B. tabaci species complex was produced showing 12 major well-resolved (0.70 posterior probability or above) genetic groups: B. tabaci (Mediterranean/Asia Minor/Africa), B. tabaci (Mediterranean), B. tabaci (Indian Ocean), B. tabaci (sub-Saharan Africa silverleafing), B. tabaci (Asia I), B. tabaci (Australia), B. tabaci (China), B. tabaci (Asia II), B. tabaci (Italy), B. tabaci (New World), B. tabaci (sub-Saharan Africa non-silverleafing) and B. tabaci (Uganda sweet potato). Further analysis of this phylogeny shows a close relationship of the New World B. tabaci with Asian biotypes, and characteristics of the major sub-Saharan Africa non-silverleafing clade strongly supports an African origin of B. tabaci due to its position at the base of the global phylogeny, and the diversity of well-resolved sub-clades within this group. Bayesian re-analyses of B. tabaci ITS, COI, and a combined dataset from a previous study resulted in seven major well-resolved races with high posterior probabilities, also showing the utility of the Bayesian method. Relationships of the 12 major B. tabaci genetic groups are discussed herein.  相似文献   

8.
根据ITS序列证据重建防己科蝙蝠葛族的系统发育   总被引:10,自引:4,他引:6  
研究了国产防己科蝙蝠葛族tirb.Menispermeae9属20种和外类群青牛胆族trib.Tinosporeae 2属3种植物完整的ITS(包括5.8S rDNA)序列。trib.Menispermeae的ITS长527~601 bp,排序后长667bp。当gap处理为missing时具281个有信息位点。PAUP软件分析结果表明:①trib.Menispermeae是一个单系类群,该分支得到hootstrap l00%的支持;②确定了存疑种Pachygone valida的系统学位置,该种是Coc—culus属的成员;③Sinomenium和Menispermum两属有很近的系统学关系,组成族内稳定的一支,它们的ITS序列同源性极高,ITS1比族内其它属长41~73bp;④Stephania和Cyclea也是系统发育关系很近的两个类群。前者具两个主要分支,其IIS1、ITS2的G+C含量差异较大,在种类组成上,该两大支与传统上Stephania属内处理的2个亚属——千金藤亚属subgen.Stephania和山乌龟亚属subgen.Tuberiphania基本一致;Cyclea属内种间的ITS序列差异小,同源性极高。  相似文献   

9.
Peintner U  Moncalvo JM  Vilgalys R 《Mycologia》2004,96(5):1042-1058
Research on the molecular systematics of Cortinarius, a species-rich mushroom genus with nearly global distribution, is just beginning. The present study explores infrageneric relationships using rDNA ITS and LSU sequence data. One large dataset of 132 rDNA ITS sequences and one combined da-taset with 54 rDNA ITS and LSU sequences were generated. Hebeloma was used as outgroup. Bayesian analyses and maximum-likelihood (ML) analyses were carried out. Bayesian phylogenetic inference performed equally well or better than ML, especially in large datasets. The phylogenetic analysis of the combined dataset with species representing all currently recognized subgenera recovered seven well-supported clades (Bayesian posterior probabilities BPP > 90%). These major clades are: /Myxacium s.l., /subg. Cortinarius, the /phlegmacioid clade (including the subclades /Phlegmacium and /Delibuti), the /calochroid clade (/Calochroi, /Ochroleuci and /Allutus), the /telamonioid clade (/Telamonia, /Orellani, /Anomali), /Dermocybe s.l. and /Myxotelamonia. Our results show that Cortinarius consists of many lineages, but the relationships among these clades could not be elucidated. On one hand, the low divergence in rDNA sequences can be held responsible for this; on the other hand, taxon sampling is problematic in Cortinarius phylogeny. Because of the incredibly high diversity (~2000 Cortinarius species), our sampling included <5% of the known species. By choosing type species of subgenera and sections, our sampling is strongly biased toward Northern Hemisphere taxa. More extensive taxon sampling, especially of species from the Southern Hemisphere, is essential to resolve the phylogeny of this important genus of ectomycorrhizal fungi.  相似文献   

10.
An RNA secondary structure model is presented for the nuclear ribosomal internal transcribed spacers (ITS) based on comparative analysis of 340 sequences from the angiosperm family Asteraceae. The model based on covariation analysis agrees with structural features proposed in previous studies using mainly thermodynamic criteria and provides evidence for additional structural motifs within ITS1 and ITS2. The minimum structure model suggests that at least 20% of ITS1 and 38% of ITS2 nucleotide positions are involved in base pairing to form helices. The sequence alignment enabled by conserved structural features provides a framework for broadscale molecular evolutionary studies and the first family-level phylogeny of the Asteraceae based on nuclear DNA data. The phylogeny based on ITS sequence data is very well resolved and shows considerable congruence with relationships among major lineages of the family suggested by chloroplast DNA studies, including a monophyletic subfamily Asteroideae and a paraphyletic subfamily Cichorioideae. Combined analyses of ndhF and ITS sequences provide additional resolution and support for relationships in the family.  相似文献   

11.
Increasing evidence suggests that geological or climatic events in the past promoted allopatric speciation of alpine plants in the Qinghai‐Tibetan Plateau and adjacent region. However, few studies have been undertaken to examine whether such allopatric divergences also occurred within a morphologically uniform species. In the present study, we report the evolutionary history of an alpine shrub species, Hippophae tibetana, based on examining chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variations. We sequenced two cpDNA fragments (trnL‐F and trnS‐G) and the nuclear ITS region in 183 individuals collected from 21 natural populations. Ten chlorotypes and 17 ITS types were identified. Phylogenetic analyses of both chlorotypes and ITS sequence variations suggested two distinct lineages distributed in the eastern and western region, respectively. On the basis of the fast and low plant substitution rates, these two lineages were estimated to have diverged from each other between 1 and 4 million years ago, during the period of the major glaciations and orogenic processes. In addition, ITS has undergone the accelerated evolution in two populations in the southern Himalaya isolated by the high mountains with a surprising accumulation of the private variations. The east–west split was also supported by an analysis of molecular variance, which partitioned around 91% of the total cpDNA variance between these two groups of populations. A single chlorotype was found for most populations in eastern or western region, suggesting a recent postglacial expansion within each region. Star‐phylogeny and mismatch analyses of all chlorotypes within the eastern group of populations suggested an earlier regional expansion before the Last Glacial Maximum (LGM). The local fixture of the different chlorotypes in multiple populations suggested more than one refugia remained for eastern or western region. Coalescent tests rejected the hypothesis that all current populations originated from a single refugium during the LGM. Instead, they supported hypothesis that two lineages diverged before the late Pleistocene. These findings, when taken together, suggested that this species had experienced long allopatric divergence and recent regional range expansions in response to orogenic processes and the climate changes. The evolutionary history of this shrub species highlights importance of geographical isolations to the intraspecific divergence of alpine plants occurring in the world's ruff. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 37–50.  相似文献   

12.
Cyprinidae is the biggest family of freshwater fish, but the phylogenetic relationships among its higher-level taxa are not yet fully resolved. In this study, we used the nuclear recombination activating gene 2 and the mitochondrial 16S ribosomal RNA and cytochrome b genes to reconstruct cyprinid phylogeny. Our aims were to (i) demonstrate the effects of partitioned phylogenetic analyses on phylogeny reconstruction of cyprinid fishes; (ii) provide new insights into the phylogeny of cyprinids. Our study indicated that unpartitioned strategy was optimal for our analyses; partitioned analyses did not provide better-resolved or -supported estimates of cyprinid phylogeny. Bayesian analyses support the following relationships among the major monophyletic groups within Cyprinidae: (Cyprininae, Labeoninae), ((Acheilognathinae, ((Leuciscinae, Tincinae), Gobioninae)), Xenocyprininae). The placement of Danioninae was poorly resolved. Estimates of divergence dates within the family showed that radiation of the major cyprinid groups occurred during the Late Oligocene through the Late Miocene. Our phylogenetic analyses improved our understanding of the evolutionary history of this important fish family.  相似文献   

13.
To understand the evolution of host-parasite relationships in the genus Golovinomyces (Ascomycete: Erysiphaceae), which are obligate parasitic fungi of plants, we investigated the phylogenetic relationships of the genus based on 60 internal transcribed spacer (ITS) and 41 28S rDNA sequences. Five major groups, each represented by isolates from a single tribe of the Asteraceae, were identified in the taxa analyzed in this study. Host plants of four groups were strictly restricted to the Asteraceae. The fifth group, the Lactuceae group, is a large group composed of isolates collected from the tribe Lactuceae of the Asteraceae and all other plant families, which suggests a close affinity between Golovinomyces and the Asteraceae in the early stages of their evolution. Tree topology comparisons between the asteraceous hosts and their parasites suggest that Golovinomyces diverged along with the phylogeny of host tribes Carsueae, Astereae, Heliantheae, and Lactuceae of the Asteraceae. However, a conflict of branching order between the tribe Anthemideae and their parasites suggests that host-jumping has occurred in the tribe Anthemideae. Consequently, we suggest that there are two different phases in the evolutionary history of the host-parasite relationships of Golovinomyces. One phase is divergence in accord with the phylogeny of their hosts, which occurred within the Asteraceae. The another phase is host-jumping, which occurred from the Asteraceae to other families and within the Asteraceae.  相似文献   

14.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l.  相似文献   

15.
Macaranga and Mallotus (Euphorbiaceae s.s.) are two closely related, large paleo(sub)tropical genera. To investigate the phylogenetic relationships between and within them and to determine the position of related genera belonging to the subtribe Rottlerinae, we sequenced one plastid (trnL-F) and three nuclear (ITS, ncpGS, phyC) markers for species representative of these genera. The analyses demonstrated the monophyly of Macaranga and the paraphyly of Mallotus and revealed three highly supported main clades. The genera Cordemoya and Deuteromallotus and the Mallotus sections Hancea and Oliganthae form a basal Cordemoya s.l. clade. The two other clades, the Macaranga clade and the Mallotus s.s. clade (the latter with Coccoceras, Neotrewia, Octospermum, and Trewia), are sister groups. In the Macaranga clade, two basal lineages (comprising mostly sect. Pseudorottlera) and a crown group with three geographically homogenous main clades were identified. The phylogeny of the Mallotus s.s. clade is less clear because of internal conflict in all four data sets. Many of the sections and informal infrageneric groups of Macaranga and Mallotus do not appear to be monophyletic. In both the Macaranga and Mallotus s.s. clades, the African and/or Madagascan taxa are nested in Asian clades, suggesting migrations or dispersals from Asia to Africa and Madagascar.  相似文献   

16.
Nucleotide sequences of mitochondrial cytochrome b and 16S rRNA genes, totaling 946 bp, were used to reconstruct a molecular phylogeny of 42 species of the subfamily Viperinae representing 12 of the 13 recognized genera. Maximum-parsimony and maximum-likelihood were used as methods for phylogeny reconstruction with and without a posteriori weighting. When representatives of the Causinae were taken as outgroup, five major monophyletic groups were consistently identified: Bitis, Cerastes, Echis, the Atherini (Atheris s.l.), and the Eurasian viperines. Proatheris was affiliated with Atheris, and Adenorhinos clustered within Atheris. The African Bitis consisted of at least three monophyletic groups: (i) the B. gabonica group, (ii) the B. caudalis group, and (iii) the B. cornuta group. B. worthingtoni and B. arietans are not included in any of these lineages. Eurasian viperines could be unambiguously devided into four monophyletic groups: (i) Pseudocerastes and Eristicophis, (ii) European vipers (Vipera s.str.), (iii) Middle East Macrovipera plus Montivipera (Vipera xanthina group), and (iv) North African Macrovipera plus Vipera palaestinae and Daboia russelii. These evolutionary lineages are consistent with historical biogeographical patterns. According to our analyses, the viperines originated in the Oligocene in Africa and successively underwent a first radiation leading to the five basal groups. The radiation might have been driven by the possession of an effective venom apparatus and a foraging startegy (sit-wait-strike) superior in most African biomes and might have been adaptive. The next diversifications led to the Proatheris-Atheris furcation, the basal Bitis splitting, and the emergence of the basal lineages within the Eurasian stock. Thereafter, lineages within Echis, Atheris, and Cerastes evolved. The emergence of three groups within Vipera s.l. might have been forced by the existence of three land masses during the early Miocene in the area of the Paratethys and the Mediterranean Seas. Taxonomic consequences of these findings are discussed.  相似文献   

17.
The phylogeny of three groups of arid Australian acacias ‐ the Acacia victoriae, A. murrayana and A. pyrifolia groups ‐ was constructed based on parsimony analysis of sequence data from the internal and external transcribed spacers (ITS and ETS) of the nuclear ribosomal DNA. Forty ingroup taxa were sequenced, including multiple accessions for some taxa and two species (A platycarpa and A. longispinea) that had been identified in other analyses as relatives of these acacias. Acacia anthochaera was used as the functional outgroup.

The ITS and ETS regions proved to be sufficiently variable to resolve relationships at both the specific and intra‐specific level. Two main clades were resolved. One clade confirmed the monophyly of the Acacia murrayana group, and relationships of species were strongly supported. All taxa in this clade have a similar pattern of seedling leaf development. In the second clade, the A. pyrifolia group is nested within the A. victoriae group and all taxa have spinose stipules. Acacia platycarpa and A. longispinea are related to this clade. Phyllode nerve number (uninerved or plurinerved) proved to be homoplasious.

Acacia victoriae is a widespread and very variable species. The molecular data identified two major groups: a group of populations occurring across northern Australia and a group of populations from the Western, Central and Eastern deserts. Further analysis of population variation is required to assess the taxonomic status of various forms in this species complex.

The geographic distributions of sister taxa suggest predominantly allopatric speciation. The degree of molecular divergence and position of the clades within subgenus Phyllodineae suggest that the lineages are not of recent origin, but have a history that relates to increased aridity in the Australian Eremean region during the Cenozoic.  相似文献   

18.
Insular oceanic islands provide excellent opportunities for the study of evolutionary processes and adaptive radiation. The Hawaiian Plantago radiation comprises six endemic taxa showing considerable inter- and intraspecific morphological and ecological diversity. The rDNA internal (ITS) and external (ETS) transcribed spacers and two recently described chloroplast spacers, ndhF-rpl32 and rpl32-trnL, were sequenced to study phylogenetic relationships within this morphologically complex group. Phylogenetic analysis provided strong evidence for the monophyly of Hawaiian Plantago, suggesting that the lineage arose from a single long-distance dispersal event. Inconsistencies between nuclear and chloroplast phylogenies suggest a history of hybridization. The basal, unresolved dichotomy of the combined phylogeny is consistent with rapid phenotypic diversification of the major lineages early in the history of this group. Speciation has largely occurred allopatrically, with divergence a result of intraisland ecological shifts between bog and woodland habitats and interisland dispersal events. Most interisland colonizations were from older to younger islands with initial colonization of Kaua'i. In our analysis, P. pachyphylla is paraphyletic and taxonomic separation of the distinct morphotypes of this species appears justified. Furthermore, the apparent hybrid ancestry and unique morphology and habitat of the endangered P. princeps var. longibracteata support its recognition at the specific rank.  相似文献   

19.
The systematic position and intrageneric relationships of the economically important Pistacia species (Anacardiaceae) are controversial. The phylogeny of Pistacia was assessed using five data sets: sequences of nuclear ribosomal ITS, the third intron of the nuclear nitrate reductase gene (NIA-i3), and the plastid ndhF, trnL-F and trnC-trnD. Significant discordance was detected among ITS, NIA-i3, and the combined plastid DNA data sets. ITS, NIA-i3, and the combined plastid data sets were analyzed separately using Bayesian and parsimony methods. Both the ITS and the NIA-i3 data sets resolved the relationships among Pistacia species well; however, these two data sets had significant discordance. The ITS phylogeny best reflects the evolutionary relationships among Pistacia species. Lineage sorting of the NIA-i3 alleles may explain the conflicts between the NIA-i3 and the ITS data sets. The combined analysis of three plastid DNA data sets resolved Pistacia species into three major clades, within which only a few subclades were supported. Pistacia was shown to be monophyletic in all three analyses. The previous intrageneric classification was largely inconsistent with the molecular data. Some Pistacia species appear not to be genealogical species, and evidence for reticulate evolution is presented. Pistacia saportae was shown to be a hybrid with P. lentiscus (maternal) and P. terebinthus (paternal) as the parental taxa.  相似文献   

20.
Lepidium sensu stricto (s.s.) (Brassicaceae) (ca. 150 species) is distributed worldwide with endemic species on every continent. It is represented in Australia and New Zealand by 19 and seven native species, respectively. In the present study we used a nuclear ribosomal internal transcribed spacer (ITS) phylogeny in comparison with a cpDNA phylogeny to unravel the origin of Australian/New Zealand species. Although phylogenetic relationships within Lepidium s.s. were not fully resolved, the cpDNA data were in agreement with a Californian origin of Lepidium species from Australia/New Zealand. Strongly conflicting signals between the cp- and nuclear DNA phylogenetic analysis clearly indicated hybridogenous genomic constitution of Australian Lepidium s.s. species: All 18 studied Australian/New Zealand Lepidium s.s. species examined shared a Californian cpDNA type. While eleven Australian/New Zealand species appeared to harbor a Californian ITS type, a group of seven species shared a South African ITS type. This pattern is most likely explained by two trans-oceanic dispersals of Lepidium from California and Africa to Australia/New Zealand and subsequent hybridization followed by homogenization of the ribosomal DNA either to the Californian or South African ITS type in the two different lineages. Calibration of our molecular trees indicates a Pliocene/Pleistocene origin of Lepidium in Australia/New Zealand. Low levels of cpDNA and ITS sequence divergence and unresolved topologies within Australian/New Zealand species suggest a rapid and recent radiation of Lepidium after the hybridization event. This coincides with dramatic climatic changes in that geological epoch shaping the composition of the vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号