首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper will focus on the developments in our lab related to the origin of the code since the Israel meeting (1,2). Principally these items are: (a) a new set of correlations (3) which include ranked hydrophobicities of amino acids and dinucleotides; (b) binding constants (4) of Phe for the four mononucleotides; and (c) binding constants (5) of Phe, Leu, Ile, Val, and Gly for polyadenylic acid (poly A). The data continue to support a model for the origin of the code based on relationships between amino acids and their anticodons.  相似文献   

2.
The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.  相似文献   

3.
Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid-5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the stability of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemical/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further experiments in this area.  相似文献   

4.
Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid -5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the sta-bility of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemi-cal/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further ex-periments in this area.  相似文献   

5.
The origin of the genetic code in the context of an RNA world is a major problem in the field of biophysical chemistry. In this paper, we describe how the polymerization of amino acids along RNA templates can be affected by the properties of both molecules. Considering a system without enzymes, in which the tRNAs (the translation adaptors) are not loaded selectively with amino acids, we show that an elementary translation governed by a Michaelis-Menten type of kinetics can follow different polymerization regimes: random polymerization, homopolymerization and coded polymerization. The regime under which the system is running is set by the relative concentrations of the amino acids and the kinetic constants involved. We point out that the coding regime can naturally occur under prebiotic conditions. It generates partially coded proteins through a mechanism which is remarkably robust against non-specific interactions (mismatches) between the adaptors and the RNA template. Features of the genetic code support the existence of this early translation system.  相似文献   

6.
It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.  相似文献   

7.
Scanning tunneling microscopy and chromatography experiments exploring the potential templating properties of nucleic acid bases adsorbed to the surface of crystalline graphite, revealed that the interactions of amino acids with the bare crystal surface are significantly modulated by the prior adsorption of adenine and hypoxanthine. These bases are the coding elements of a putative purine-only genetic alphabet and the observed effects are different for each of the bases. Such mapping between bases and amino acids provides a coding mechanism. These observations demonstrate that a simple pre-RNA amino acid discrimination mechanism could have existed on the prebiotic Earth providing critical functionality for the origin of life.  相似文献   

8.
We have assumed that the coevolution theory of genetic code origin (Wong JT, Proc Natl Acad Sci USA 72:1909–1912, 1975) is essentially correct. This theory makes it possible to identify at least 10 evolutionary stages through which genetic code organization might have passed prior to reaching its current form. The calculation of the minimization level of all these evolutionary stages leads to the following conclusions. (1) The minimization percentages increased linearly with the number of amino acids codified in the codes of the various evolutionary stages when only the sense changes are considered in the analysis. This seems to favor the physicochemical theory of genetic code origin even if, as discussed in the paper, this observation is also compatible with the coevolution theory. (2) For the first seven evolutionary stages of the genetic code, this trend is less clear and indeed is inverted when we consider the global optimisation of the codes due to both sense changes and synonymous changes. This inverse correlation between minimization percentages and the number of amino acids codified in the codes of the intermediate stages seems to favor neither the physicochemical nor the stereochemical theories of genetic code origin, as it is in the early and intermediate stages of code development that these theories would expect minimization to have played a crucial role, and this does not seem to be the case. However, these results are in agreement with the coevolution theory, which attributes a role to the physicochemical properties of amino acids that, while important, is nevertheless subordinate to the mechanism which concedes codons from the precursor amino acids to the product amino acids as the primary factor determining the evolutionary structuring of the genetic code. The results are therefore discussed in the context of the various theories proposed to explain genetic code origin. Received: 25 October 1998 / Accepted: 19 February 1999  相似文献   

9.
Two forces are in general, hypothesized to have influenced the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships. In view of this, we have considered a model incorporating these two forces. In particular, we have studied the optimization level of the physicochemical properties of amino acids in the set of amino acid permutation codes that respects the biosynthetic relationships between amino acids. Where the properties of amino acids are represented by polarity and molecular volume we obtain indetermination percentages in the organization of the genetic code of approximately 40%. This indicates that the contingent factor played a significant role in structuring the genetic code. Furthermore, this result is in agreement with the genetic code coevolution hypothesis, which attributes a merely ancillary role to the properties of amino acids while it suggests that it was their biosynthetic relationships that organized the code. Furthermore, this result does not favor the stereochemical models proposed to explain the origin of the genetic code. On the other hand, where the properties of amino acids are represented by polarity alone, we obtain an indetermination percentage of at least 21.5%. This might suggest that the polarity distances played an important role and would therefore provide evidence in favor of the physicochemical hypothesis of genetic code origin. Although, overall, the analysis might have given stronger support to the latter hypothesis, this did not actually occur. The results are therefore discussed in the context of the different theories proposed to explain the origin of the genetic code. Received: 10 September 1996 / Accepted: 3 March 1997  相似文献   

10.
Only 20 of more than 250 biosynthetic amino acids are common (coded) constituents of contemporary protein. In this paper, several stages of evolution, both prebiotic and biotic, are examined for means by which other (non-proteinous) amino acids may have been selected against. Simulated prebiotic experiments indicate that some non-proteinous amino acids were present prebiotically, that they could be incorporated during the formation of prebiotic protein, and that they would function in such protein. Biotic selection is thus indicated.Non-proteinous amino acids currently are available via biosynthetic pathways for potential incorporation into bioprotein. Codon-anticodon interaction, peptidyl transferases, and elongation and termination factors of protein synthesis do not show the specificity needed to preclude non-proteinous amino acids. Highly specific recognition among amino acids, tRNAs, and activating enzymes is concluded to be why the kinds of amino acids in contemporary protein are limited to twenty.Some of several theories concerning the origin, nature and evolution of the genetic code can readily accommodate non-proteinous amino acids. Some evidence suggests that such amino acids were eventually eliminated from protein because they were less suitable than related proteinous amino acids. However, deterministic or “direct interaction” theories currently lack sufficient experimental support to answer how non-proteinous amino acids were precluded; such theories, being testable, probably have the most potential for providing an answer.  相似文献   

11.
To explore how chemical structures of both nucleobases and amino acids may have played a role in shaping the genetic code, numbers of sp2 hybrid nitrogen atoms in nucleobases were taken as a determinative measure for empirical stereo-electronic property to analyze the genetic code. Results revealed that amino acid hydropathy correlates strongly with the sp2 nitrogen atom numbers in nucleobases rather than with the overall electronic property such as redox potentials of the bases, reflecting that stereo-electronic property of bases may play a role. In the rearranged code, five simple but stereo-structurally distinctive amino acids (Gly, Pro, Val, Thr and Ala) and their codon quartets form a crossed intersection “core”. Secondly, a re-categorization of the amino acids according to their β-carbon stereochemistry, verified by charge density (at β-carbon) calculation, results in five groups of stereo-structurally distinctive amino acids, the group leaders of which are Gly, Pro, Val, Thr and Ala, remarkably overlapping the above “core”. These two lines of independent observations provide empirical arguments for a contention that a seemingly “frozen” “core” could have formed at a certain evolutionary stage. The possible existence of this codon “core” is in conformity with a previous evolutionary model whereby stereochemical interactions may have shaped the code. Moreover, the genetic code listed in UCGA succession together with this codon “core” has recently facilitated an identification of the unprecedented icosikaioctagon symmetry and bi-pyramidal nature of the genetic code.  相似文献   

12.
The coevolution theory of genetic code origin (Wong, J.T. 1975, Proc. Natl Acad. Sci. U.S.A.72, 1909-1912) is assumed here to be substantially correct. This theory is based on the strict parallelism of the biosynthetic relationships between amino acids and the organization of the genetic code and postulates that these relationships were mediated by tRNA-like molecules on which the biosynthetic transformations between precursor and product amino acids took place. These transformations underlay the mechanism that gave rise to genetic code organization. One of the pathways which represents these transformations found in current organisms, and which are thus probably molecular fossils, is the Met-tRNA(fMet)-->fMet-tRNA(fMet)pathway. This pathway is present only in the Bacteria domain. This along with other observations and arguments leads us to believe that this pathway is a clear violation of the universality of the genetic code. Furthermore, the presence of this pathway only in the Bacteria domain seems to imply that the translation apparatus was still rapidly evolving when this pathway was fixed. This, in turn, appears to imply that the last universal common ancestor was a progenote. Finally, the implications that the finding of this pathway has for the stereochemical theory of genetic code origin are discussed.  相似文献   

13.
Two ideas have essentially been used to explain the origin of the genetic code: Crick's frozen accident and Woese's amino acid-codon specific chemical interaction. Whatever the origin and codon-amino acid correlation, it is difficult to imagine the sudden appearance of the genetic code in its present form of 64 codons coding for 20 amino acids without appealing to some evolutionary process. On the contrary, it is more reasonable to assume that it evolved from a much simpler initial state in which a few triplets were coding for each of a small number of amino acids. Analysis of genetic code through information theory and the metabolism of pyrimidine biosynthesis provide evidence that suggests that the genetic code could have begun in an RNA world with the two letters A and U grouped in eight triplets coding for seven amino acids and one stop signal. This code could have progressively evolved by making gradual use of letters G and C to end with 64 triplets coding for 20 amino acids and three stop signals. According to proposed evidence, DNA could have appeared after the four-letter structure was already achieved. In the newborn DNA world, T substituted U to get higher physicochemical and genetic stability.  相似文献   

14.
The canonical genetic code has been reported both to be error minimizing and to show stereochemical associations between coding triplets and binding sites. In order to test whether these two properties are unexpectedly overlapping, we generated 200,000 randomized genetic codes using each of five randomization schemes, with and without randomization of stop codons. Comparison of the code error (difference in polar requirement for single-nucleotide codon interchanges) with the coding triplet concentrations in RNA binding sites for eight amino acids shows that these properties are independent and uncorrelated. Thus, one is not the result of the other, and error minimization and triplet associations probably arose independently during the history of the genetic code. We explicitly show that prior fixation of a stereochemical core is consistent with an effective later minimization of error. [Reviewing Editor : Dr. Stephen Freeland]  相似文献   

15.
A model for topological coding of proteins is proposed. The model is based on the capacity of hydrogen bonds (property of connectivity) to fix conformations of protein molecules. The protein chain is modeled by an n -arc graph with the following elements: vertices (alpha -carbon atoms), structural edges (peptide bonds) and connectivity edges (virtual edges connecting non-adjacent atoms). It was shown that 64 conformations of the 4-arc graph can be described in the binary system by matrices of six variables which form a supermatrix containing four blocks. On the basis of correspondences between the pairs of variables in matrices and four letters of the genetic code matrices and supermatrix are converted, respectively, into the triplets and the table of the genetic code. An algorithm admitting computer programming is proposed for coding the n -arc graph and protein chain. Connectivity operators (polar amino acids) are assigned to blocks of triplets coding for cyclic conformations (G, A-in the second position), while anti-connectivity operators (non-polar amino acids) correspond to blocks of triplets coding for open conformations (C, U-in the second position). Amino acids coded by triplets differing by the first base have different structures. The third base for C, U and G, A is degenerated. Properties of the real genetic code are in full agreement with the model. The model provides an insight into the topological nature of the genetic code and can be used for development of algorithms for the prediction of the protein structure.  相似文献   

16.
The experimental evidence for the spontaneous formation and structure determination of two-dimensional monolayers of the purine and pyrimidine bases is examined. The plausibility of such structures forming spontaneously at the solid-liquid interface following their prebiotic synthesis suggests a functional role for them in the emergence of life. It is proposed that prebiotic interactions of enantiomorphic monolayers of mixed base composition with racemic amino acids might be implicated in a simultaneous origin of a primitive genetic coding mechanism and biomolecular homochirality. The interactions of these monolayers with carbohydrates and other derivatives is also discussed.  相似文献   

17.
Chemical language of the genetic code is suggested in which elementary information code units are presented by functional groups of amino acids and nucleotides. Using this language, the existence of correspondence and conformity of chemical parameters of amino acids and of central nucleotides of their anticodons was demonstrated. These findings confirm the idea that the genetic code is determined by chemical properties of amino acids and nucleotides and that this determination is the result of direct specific interactions between amino acids and nucleotide triplets at the stage of the origin of the code. The data obtained reveal primary role of anticodon triplets in the origin of the code. Key role of the central nucleotide in triplets for amino acid coding is confirmed.  相似文献   

18.
The chemical language of genetic code is proposed. As a result of chemical language application for the analysis of the modern genetic code, the existence of an unambiguous correspondence between the chemical properties of amino acids and their coding triplets (codons and anticodons) is shown. This confirms the hypothesis of the code chemical determination. The complementarity between the chemical properties of amino acids and their anticodons (but not the codons) has been found also to exist. This observation supports the hypothesis of the genetic code determination by the direct recognition and also underlines the primary role of anticodon in the origin of genetic code in comparison with codons.  相似文献   

19.
An evolutionary scheme is postulated in which the bases enter the genetic code in a definite temporal sequence and the correlated amino acids are assigned definite functions in the evolving system.The scheme requires a singlet code (guanine coding for glycine) evolving into a doublet code (guanine-cytosine doublet coding for gly (GG), ala (GC), arg (CG), pro (CC)). The doublet code evolves into a triplet code. Polymerization of nucleotides is thought to have been by block polymerization rather than by a template mechanism. The proteins formed at first were simple structural peptides. No direct nucleotide-amino acid stereo-chemical interaction was required. Rather an adaptor-type indirect mechanism is thought to have been functioning since the origin.  相似文献   

20.
H Hartman 《Origins of life》1975,6(3):423-427
An evolutionary scheme is postulated in which the bases enter the genetic code in a definite temporal sequence and the correlated amino acids are assigned definite functions in the evolving system. The scheme requires a singlet code (guanine coding for glycine) evolving into a doublet code (guanine-cytosine doublet coding for gly (GG), ala (GC), arg (CG), pro (CC). The doublet code evolves into a triplet code. Polymerization of nucleotides is thought to have been by block polymerization rather than by a template mechanism. The proteins formed at first were simple structural peptides. No direct nucleotide-amino acid stereo-chemical interaction was required. Rather an adaptor-type indirect mechanism is thought to have been functioning since the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号