首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A fast-growing Pseudomonas fluorescens CAS102, isolated by enrichment technique from polluted soil, effectively utilized morpholine as the energy source. The strain was able to grow in high concentrations of morpholine but accumulation of ammonia inhibited its growth and complete mineralization. The molar conversion ratio of morpholine to ammonia was 1:0.82. The organism harboured a single, multiple antibiotic- and heavy metal-resistance 140kb plasmid which was resistant to curing. Transformation studies showed that the morpholine degradative phenotype was expressed only in Pseudomonas putida and not in Escherichia coli. Growth studies on different degradative intermediates of morpholine suggested that plasmid-encoded genes were involved in the heterocyclic ring cleavage and the remaining reactions were mediated by chromosomal genes.  相似文献   

3.
A Pseudomonas fluorescens strain SKP3 capable of utilizing both phthalic acid and terephthalic acid as sole source of carbon and energy was isolated by enrichment technique. Phthalic acid, terephthalic acid and protocatechuic acid were easily oxidized by both phthalate-grown and glucose-grown cells without a lag period. Phthalic acid is metabolized through the ortho cleavage pathway and terephthalic acid through the meta cleavage pathway and the enzymes of the two pathways are constitutive in nature. A large plasmid of approximately 140kb in size was found to be involved in the degradation of phthalates. The catabolic plasmid pSKL was transferable to different hosts.  相似文献   

4.
Nitrite inhibition of denitrification by Pseudomonas fluorescens   总被引:5,自引:0,他引:5  
Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studies. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 mug N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuosly, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuoulsy exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (grown on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
6.
Pseudomonas fluorescens strain BR-5 stimulated the growth of maize in a natural soil and inhibited fungal root pathogens in vitro. Strain BR-5 was detected inside plant cells, indicating that it is able to colonize the endorhizosphere. No significant effect was detected on soil or ectorhizosphere microbial population after inoculation of strain BR-5 onto seeds.  相似文献   

7.
Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.  相似文献   

8.
The metabolic interactions between proteinase-producing bacteria and other members of bacterial communities are poorly investigated, although they are important for the understanding of structure-function relationships in complex ecosystems. We constructed simple model communities consisting of proteolytic and non-proteolytic Pseudomonas fluorescens strains to identify relevant interactions and to assess their specific significance during the mobilization of protein for growth. The proteolytic or non-proteolytic model communities were established by co-inoculating proteolytic or proteinase-deficient Tn5-mutants of P. fluorescens strain ON2 with the non-proteolytic reporter strain DF57-N3 that expresses bioluminescence in response to nitrogen limitation. The growth medium was composed such that growth would be nitrogen limited in the absence of proteolytic activity. In the proteolytic communities data on growth and nitrogen availability showed that the protein hydrolysates were available to both the proteolytic and the non-proteolytic strain. Competition between these strains profoundly affected both growth and proteinase production. Hence, the mobilization of protein was closely coupled to the competitive success of the proteolytic strain. These findings provide new insight into the metabolic interactions that occur when protein is degraded in mixed bacterial communities.  相似文献   

9.
荧光假单胞菌生防机理的研究进展   总被引:7,自引:0,他引:7  
荧光假单胞菌是植物根际促生细菌(Plant Growth Promoting Rhizobacteria,PGPR)具有分布广、数量多、营养需要简单、繁殖快、竞争定殖力强的特点。它们能通过产生多种次生代谢物及有效的根际定殖防治植物病害,成为植物生防控制的重要研究对象。主要论述了荧光假单胞菌对植物病害生物防治机理的研究进展。  相似文献   

10.
Salmonella enterica and its serovars have been associated with pathogen contamination of tomatoes with numerous outbreaks of salmonellosis. To improve food safety, pathogen control is of immediate concern. The aim of this research was to assess the populations of natural microflora (aerobic mesophilic bacteria, lactic acid bacteria, yeasts and moulds and Pseudomonas species) on tomatoes, and evaluate the efficacy of Pseudomonas fluorescens (Pf) and Pseudomonas chlororaphis (Pc) for inactivation of Salmonella on tomatoes. Microflora were determined on sanitised and unsanitised produce and enumerated on Plate Count Agar, de Man, Rogosa and Sharpe medium, Potato Dextrose Agar and Pseudomonas Agar F media. The efficacy of Pc and Pf for inactivation of S. enterica serovars Montevideo, Typhimurium and Poona was determined on spot-inoculated tomato stem scars. The effects of storage time on bacterial populations were also investigated. On unsanitised tomatoes, lactic acid bacteria, Pseudomonas sp., aerobic mesophilic bacteria and yeasts and moulds ranged from 3.31–4.84, 3.93–4.77, 4.09–4.80 and 3.83–4.67 log CFU/g of produce, respectively. The microflora were similar at 0 and 24 storage hours on sanitised produce. The suppression of Salmonella Montevideo by P. chlororaphis and P. fluorescens on tomatoes ranged from 0.51 to 2.00 log CFU/g of produce. On Salmonella Montevideo and S. Typhimurium, the suppressive effects ranged from 0.51 to 0.95 and 0.46 to 2.00 log CFU/g of produce, respectively. The pathogen suppressive effects may be attributed to competition ability of Pseudomonas relative to Salmonella strains. Pseudomonas strains may be effective against Salmonella strains as a post-harvest application, but strain synergy is required to optimise pathogen reductions.  相似文献   

11.
Abstract The population dynamics of two genetically engineered Pseudomonas fluorescens strains, D5 and C5t, introduced into a loamy sand soil, in competition with a spontaneous antibiotic-resistant mutant of the corresponding wildtype strain was studied. Strain D5 contained an insertion of transposon Tn5 in its genome, whereas strain C5t was obtained by insertion of Tn 5 :: tox , a Tn 5 -derivative containing a Bacillus thuringiensis var. morrisoni δ-endotoxin gene, into the chromosome using a suicide vector system. Southern hybridization analysis demonstrated the absence of vector sequences, and the presence of single copies of either Tn 5 or Tn 5 :: tox in the respective strains. Western blotting and a bio-assay on larvae of Anopheles stephensi suggested the tox gene was functional in clone C5t. Both D5 and C5t were prototrophic and their generation times in minimal medium were slightly below that of the corresponding wild-type strain. Tn 5 and Tn 5 :: tox were stable in both clones during growth in minimal medium for 16 generations. During growth in competition with the wild-type strain, D5 competed well, however C5t was outcompeted from 50 to below 3% of the population in 40 generations. During growth in competition in the sterile loamy sand, both strains were outcompeted by the parent strain; strain C5t was less competitive than D5. In non-sterile loamy sand, the introduced mixed populations showed a slow decline; both C5t and D5 were outcompeted by the parent strain. The decreased fitness of both modified strains, although significant, was considered to be small in ecological terms. Further, the addition of 10% bentonite clay to the loamy sand resulted in a significant enhancement of survival of the mixed populations, and a stabilization of the proportions between the modified strains and the parent. Finally, there was a trend towards a decrease in the proportion modified strain/parent strain in both mixes in the rhizosphere of wheat.  相似文献   

12.
Plant diseases are among the main constraints affecting the production and productivity of crops both in terms of quality and quantity. Use of chemicals continues to be the major tactic to mitigate the menace of crop diseases. However, because of the environmental concerns, health conscious attitude of human beings and other hazards associated with the use of chemicals, use of bio agents to suppress the disease-causing activity of plant pathogens is gaining importance. With the emergence and increase of microbial organisms resistant to multiple antibiotics, and the continuing emphasis on health-care costs, many researchers have tried to develop new and effective antimicrobial reagents that do not stimulate resistance and are less expensive. Nanoscale materials have emerged as novel antimicrobial agents owing to their high surface area to volume ratio and the unique chemical and physical properties, which increases their contact with microbes and their ability to permeate cells. Since silver displays multiple modes of inhibitory action to micro-organisms, it may be used for controlling various plant pathogens in a relatively safer way compared to synthetic fungicides. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use synthesis of nanoparticles of silver by reduction of aqueous Ag+ ions with the culture supernatant of Pseudomonas fluorescens CHA0. In this study, P. fluorescens CHA0 that has a medium impact on Gaeumannomyces graminis var. tritici was selected. Then, P. fluorescens CHA0 was used for the synthesis of silver nanoparticles. The morphology of the nanoparticles was characterised by Transmission Electron Microscopy and UV–vis spectroscopy. The silver nanoparticles of approximate size 50 nm were observed. The process of reduction is extracellular which makes it an easier method for the synthesis of silver nanoparticles.  相似文献   

13.
Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens   总被引:1,自引:0,他引:1  
Mg2+ can potentially influence bacterial adhesion directly through effects on electrostatic interactions and indirectly by affecting physiology-dependent attachment processes. However, the effects of Mg2+ on biofilm structure are largely unknown. In this study, Pseudomonas fluorescens was used to investigate the influence of Mg2+ concentration (0, 0.1 and 1.0 mM MgCl2) on biofilm growth. Planktonic and attached cells were enumerated (based on DAPI staining) while biofilm structures were examined via confocal laser scanning microscopy and three-dimensional structures were reconstructed. Mg2+ concentration had no influence on growth of planktonic cells but, during biofilm formation, Mg2+ increased the abundance of attached cells. For attached cells, the influence of Mg2+ concentration changed over time, suggesting that the role of Mg2+ in bacterial attachment is complex and dynamic. Biofilm structures were heterogeneous and surface colonization and depth increased with increasing Mg2+ concentrations. Overall, for P. fluorescens, Mg2+ increased initial attachment and altered subsequent biofilm formation and structure.  相似文献   

14.
The extracellular protease of Pseudomonas fluorescens NC 3 was optimally active at 40°C in a reaction mixture containing: 50 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) buffer (pH 6.6), 0.5 mM CaCl2, and 25 mg hide powder azure in 5 ml total volume. Divalent cation chelators, i.e., EDTA, o-phenanthroline, citrate or phosphate, inhibited the enzyme. Protease production by P. fluorescens NC 3 was initiated during late-logarithmic-growth phase in a sodium caseinate medium and reached its maximum at the onset of the stationary phase.  相似文献   

15.
李慧  王平  王婧  戴晴  肖明 《生物学杂志》2010,27(2):51-54
通过化感试验研究荧光假单胞杆菌P13菌株对油菜种子萌发、幼苗生长的影响及其在油菜根际土壤和根部定植的能力。结果表明,P13菌株发酵液对油菜种子萌发没有明显的促进作用,稀释10倍的菌体发酵液处理种子与对照组无显著差异,而低浓度和高浓度都抑制种子萌发;田间试验发现P13菌株能促进植物幼苗生长,根长、苗高、干重和长1片叶子的株数均与对照组差异显著;1周内P13菌株在油菜根际土壤和根部定植良好,定植数量均达到107cfu/g以上。说明P13菌株可被开发为微生物菌剂,但在施用时不宜用作种子处理剂。  相似文献   

16.
一株荧光假单胞杆菌的分离鉴定与反硝化特性   总被引:1,自引:0,他引:1  
【目的】从污水厂的活性污泥中获得一株高效反硝化细菌。【方法】采用低温驯化,进行初筛、复筛选取一株反硝化活性最高的菌株,命名为L2,通过形态学、生理生化特征及16S r RNA基因序列分析研究其分类地位,系统研究理化因素对该菌株反硝化性能的影响。【结果】菌株在低温条件下能够稳定高效地进行反硝化,鉴定该菌株为荧光假单胞杆菌(Pseudomonas fluorescens),其反硝化最适接种量为10%,温度为20°C,p H为7.0,盐浓度为0.5%,碳源为葡萄糖,C/N为5.0,能够耐受较高初始硝态氮浓度。【结论】菌株L2是一株耐低温、耐高浓度初始硝态氮、耐低C/N、兼性厌氧、高效反硝化的荧光假单胞杆菌。  相似文献   

17.
Aims: The objective was to study the growth of Pseudomonas in a food product (tofu) where it typically occurs as a spoilage organism, and when this product is stored under modified atmosphere. Methods and Results: A Pseudomonas strain was isolated from the endogenous microflora of tofu. Tofu was inoculated with the strain, packaged in different gas conditions (air, 100% N2, 30% CO2/70% N2 or 100% CO2) and stored under refrigerated conditions. Microbial loads and the headspace gas composition were monitored during storage. Conclusions: The strain was capable of growing in atmospheres containing no or limited amounts of oxygen and increased amounts of carbon dioxide. Even when 100% CO2 was used, growth could not be inhibited completely. Significance and Impact of Study: In contrast to the general characteristics of the genus Pseudomonas (strictly aerobic, highly sensitive to CO2), it should not be expected in the food industry that removing oxygen from the food package and increasing the carbon dioxide content, combined with cold storage, will easily avoid spoilage by Pseudomonas species. Guarantee of hygienic standards and combination of strategies with other microbial growth inhibiting measures should be implemented.  相似文献   

18.
Abstract Pseudomonas fluorescens appeared to circumvent the challenge imposed by millimolar amounts of metals (5 mM Al3+, 5 mM Fe3+, 2 mM Ca2+, 1 mM Ga3+ and 3 mM Zn2+) by the formation of phosphatidylethanolamine. This lipid moiety constituted an important organic component of an insoluble gelatinous residue in which most of the test metals were immobilized at stationary phase of growth. Ultracentrifugation and dialysis experiments showed that the metals were associated with phosphatidylethanolamine from early stages of growth. Transmission electron microscopy revealed metal rich bodies in the cytoplasm prior to their secretion in the spent fluid. These results demonstrate a role of phosphatidylethanolamine in multiple-metal homeostasis.  相似文献   

19.
Abstract Pseudomonas fluorescens strain CHA0 protects plants from various root diseases. Antibiotic metabolites synthesized by this strain play an important role in disease suppression; their production is mediated by the g lobal ac tivator gene gacA . Here we show by complementation that the gacA gene is also essential for the expression of two extracellular enzymes in P. fluorescens CHA0: phospholipase C and a 47-kDa metalloprotease. In contrast, the production of another exoenzyme, lipase, is not regulated by the gacA gene. Protease, phospholipase and antibiotics of P. fluorescens are all known to be optimally produced at the end of exponential growth; thus the gacA gene appears to be a general stationary-phase regulator.  相似文献   

20.
When cultured in a defined citrate medium supplemented with 1 mM gallium (III) Pseudomonas fluorescens ATCC 13525 experienced a lag phase of 40 h with no apparent diminution in cellular yield. Following initial uptake of the metal-ligand complex, gallium was secreted in the spent fluid. This lag phase was abolished either by inoculating the medium with gallium adapted cells or by inclusion of iron (III) (20 microM) in the growth medium. In the culture enriched with both gallium and iron (III), X-ray fluorescence spectra revealed a gradual decrease of gallium from the spent fluid as growth progressed. In a phosphate deficient medium, no cellular multiplication was observed in the presence of gallium. The inhibitory influence mediated by the trivalent metal was reversed by the addition of (20 microM) iron (III). Although bacterial growth was accompanied by an initial decrease in exocellular gallium, a marked increment in the concentration of this metal was observed in the spent fluid at stationary phase of growth. Citrate was not detected in the exocellular fluid at cessation of bacterial multiplication. Electrophoretic analyses revealed numerous variations in the cytoplasmic protein profiles of the control and metal stressed cells. Gallium induced the syntheses of polypeptides with apparent molecular masses of 89 kDa, 50 kDa, 39 kDa, 26 kDa and 12 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号