首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Koehler AV  Poulin R 《Parasitology》2012,139(1):128-136
Variability of immune responses is an essential aspect of ecological immunology, yet how much of this variability is due to differences among parasite genotypes remains unknown. Here, variation in immune response of the crab, Macrophthalmus hirtipes, is examined as a function of experimental exposure to 10 clonal cercarial lineages of the trematode Maritrema novaezealandensis. Our goals were (1) to assess the variability of the host immune reaction elicited by 10 parasite clones, (2) to test if the heterozygosity-fitness correlation, whereby organisms with higher heterozygosities achieve a higher fitness than those with lower heterozygosities, applies to heterozygous parasites eliciting weak immune responses, and (3) to see how concomitant infections by other macroparasites influence the crab's immune response to cercariae. Parasite clones were distinguished and heterozygosities calculated using 20 microsatellite markers. We found that exposure to cercariae resulted in increased haemocyte counts, and that although interclonal differences in immune response elicited were detected, parasite heterozygosity did not correlate with host immune response. Additionally, the presence of other pre-existing parasites in hosts did not influence their immune response following experimental exposure to cercariae. Overall, the existence of variability in immune response elicited by different parasite clones is promising for future ecological immunology studies using this system.  相似文献   

2.
Abstract.— Hosts vary in both their strength of response to a general immunological insult and in their specific susceptibility to different parasite species or different strains of the same parasite. The variation in the general immune response is considered a result of the costs imposed by selection on defended individuals. The variation in the specific response may originate from variation in host and parasite genotypes and is a requirement for frequency-dependent selection. The relationship between these two fundamental aspects of defense has only rarely been studied. Using the bumblebee Bombus terrestris and its gut trypanosomal parasite Crithidia bombi we found that the host's specific response profile toward different strains correlates negatively with its level of response to a general insult. This is the opposite result one would expect if the level of general response were simply a measure of immunological quality (immunocompetence). Rather, it suggests that there is some form of a trade-off between these two fundamental aspects of the immune system. These results, therefore, shed an important light on the possible constraints that affect the evolution of the immune system and particularly the trade-off between different arms of the immune system.  相似文献   

3.
Negative density-dependent effects on the fitness of parasite populations are an important force in their population dynamics. For the parasitic nematode Strongyloides ratti, density-dependent fitness effects require the rat host immune response. By analysis of both measurements of components of parasite fitness and of the host immune response to different doses of S. ratti infection, we have identified specific parts of the host immune response underlying the negative density-dependent effects on the fitness of S. ratti. The host immune response changes both qualitatively from an inflammatory Th1- to a Th2-type immune profile and the Th2-type response increases quantitatively, as the density of S. ratti infection increases. Parasite survivorship was significantly negatively related to the concentration of parasite-specific IgG(1) and IgA, whereas parasite fecundity was significantly negatively related to the concentration of IgA only.  相似文献   

4.
The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host.  相似文献   

5.
A model for the human immune response to the malaria parasite Plasmodium falciparum is used to analyse the dynamics of an infection within an individual patient. Previous models either looked at competition between two parasite genotypes or at one parasite clone and the immune response to it. This model describes the course of an infection caused by the blood stages of two parasite genotypes differing in reproductive rate and in the immune response they elicit. The interactions between the genotypes can be interpreted as exploitative competition for red blood cells. Interactions between omnipotent immune cells and parasites resemble a predator-prey relation. In analysing these kinds of models, classical theoretical ecology usually deals with long-term behaviours, i.e. looks for equilibria and conditions for coexistence. However, especially in endemic regions with ongoing transmission, an equilibrium state of infections is unlikely. When reinfections with another parasite genotype were considered, the short-term dynamics of the infection changed dramatically, depending on which genotype was first, when the second one appeared, and what kind of immune response was elicited. If the slow development of immunity to malaria really is due to its genotype specificity, the effects of superinfections will be of great importance.  相似文献   

6.
Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them twice to the parasite and then compared their social immune response with that of naive mini-nests that had not been experimentally exposed to the parasite. Ants allogroomed individuals exposed to the parasite, doing this both for those freshly treated with the parasite, which were infectious but not yet infected, and for those treated 2 days previously, which were already infected but no longer infectious. We found that ants exposed to the parasite received more allogrooming in immunized mini-nests than in naive mini-nests. This increased the survival of the freshly treated ants, but not those that were already infected. The results thus indicate that the social immune response of this leaf-cutting ant is adaptive, with the group exhibiting a greater and more effective response to a parasite that it has previously been exposed to.  相似文献   

7.
Chemokines play a critical role in immune cell trafficking and the transition from an innate to an acquired immune response. We analyzed host response in neonatal mice deficient in chemokine receptor CCR5 following infection with the intracellular protozoan parasite Cryptosporidium parvum. CCR5 neonatal mice had a higher parasite burden at the early stage of infection but eliminated the parasite as efficiently as their wild-type counterparts. The higher sensitivity of neonates at the beginning of infection was not due to an altered IFNgamma response. An increased CCR2-attracting chemokine response associated with the recruitment of CCR2-positive cells in the infected mucosa may have compensated for the absence of CCR5. A lack of CCR5 thus has an impact in the early stage of C. parvum infection in neonates, but this receptor is dispensable for subsequent parasite elimination.  相似文献   

8.
The effects of dexamethasone (dex) treatment on infections with the microsporidian parasite, Loma salmonae and the effects of dex on initiation of the adaptive immune response were investigated in rainbow trout, Oncorhynchus mykiss experimentally infected with the parasite. Dex treatment resulted in significantly higher infections with the parasite in the gills and other internal organs, suggesting that dex inhibits aspects of the innate immune response to L. salmonae; the heavier infections in the gills and organs of rainbow trout resembled infections seen in Chinook salmon. Mean xenoma counts per microscope field in the gills of fish infected with L. salmonae treated with dex or left untreated were 169 and 30, respectively. Although higher numbers of xenomas were observed in dex treated fish, the xenomas were generally smaller in size than in infected control fish. The xenomas in dex treated fish showed morphological signs of degeneration including loss and degeneration of early parasite stages, accumulation of amorphous material in xenomas, and infiltration with phagocytic cells containing degenerated parasites. The xenomas in infected untreated fish had larger xenomas with a more uniform size and contained identifiable parasite stages in the cytoplasm. According to this study, once fish have developed an adaptive immune response to the parasite by previous exposure, then fish have 100% protection to reinfection even when treated with heavy doses of dex. L. salmonae immune fish treated or untreated with dex during reinfection with the parasite developed no xenomas in the gills 6 weeks post reinfection. These results indicate that once the cellular response is primed to L. salmonae, then dex related immunosuppression does not reduce the effectiveness of the adaptive immune response.  相似文献   

9.
C3H mice infected with Leishmania mexicana fail to develop a protective Th1 response, and are unable to cure. In this study, we show that L. mexicana cysteine proteases suppress the antileishmanial immune response. Previous studies demonstrated that deletion of the entire multicopy cysteine protease B (CPB) gene array in L. mexicana is associated with decreased parasite virulence, potentially attributable to factors related to parasite fitness rather than to direct effects on the host immune response. We now show that C3H mice infected with the L. mexicana deletion mutant (Deltacpb) initially develop lesions that grow at rates comparable to those of wild-type L. mexicana-infected mice. However, in contrast to controls, Deltacpb-induced lesions heal with an accompanying Th1 immune response. Lesion resolution was Th1 dependent, as Deltacpb-infected IL-12p40(-/-) and STAT4(-/-) mice developed high parasite burdens and progressive disease. Moreover, when L. major was transfected with a cosmid expressing multiple L. mexicana CPB genes, this parasite induced a significantly lower IFN-gamma response compared with wild-type L. major. These data indicate that cysteine proteases of L. mexicana are critical in suppressing protective immune responses and that inhibition of CPB may prove to be a valuable immunomodulatory strategy for chronic forms of leishmaniasis.  相似文献   

10.
Toxoplasma gondii is an intracellular parasite that frequently infects a large spectrum of warm-blooded animals. This parasite induces abortion and establishes both chronic and silent infections, particularly in the brain. The chronic infection is therefore a permanent threat for the host in cases of immunosuppression. Parasite penetration into the host activates a strong anti-parasite immune response, but is also used by the parasite to chronically persist. In the present paper, we discuss the data obtained in the laboratory of John Boothroyd that reports the molecular cross talk between the parasite rhoptry proteins and the host cell. During host cell invasion, rhoptries participate to the constitution of the mobile junction that drives the parasite into the host cell, while building the parasitophorus vacuole in which the parasite grows. Some soluble rhoptries, such as ROP16, are shed into the cytoplasm, and then reach the nucleus where they can eventually impact different signaling pathways such as STAT3/6, key molecules in the immune response establishment.  相似文献   

11.
Knowledge of the factors that limit parasite numbers offers hope of improved intervention strategies as well as exposing the selective forces that have shaped parasite life-history strategies. We develop a theoretical framework with which to consider the intra-host regulation of malaria parasite density. We analyse a general model that relates timing and magnitude of peak parasite density to initial dose under three different regulatory processes. The dynamics can be regulated either by top-down processes (upgradable immune regulation), bottom-up processes (fixed immune response and red blood cell (RBC) limitation) or a mixture of the two. We define and estimate the following key parameters: (i) the rate of RBC replenishment; (ii) the rate of destruction of uninfected RBCs; and (iii) the maximum parasite growth rate. Comparing predictions of this model with experimental results for rodent malaria in laboratory mice allowed us to reject functional forms of immune upregulation and/or effects of RBC limitation that were inconsistent with the data. Bottom-up regulation alone was insufficient to account for observed patterns without invoking either localized depletion of RBC density or merozoite interference. By contrast, an immune function upregulated in proportion to either merozoite or infected RBC density was consistent with observed dynamics. An immune response directed solely at merozoites required twice the level of activation of one directed at infected RBCs.  相似文献   

12.
Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito''s immune responses during their long development? Whereas older oocysts might camouflage themselves by incorporating mosquito-derived proteins into their surface capsule, younger stages are susceptible to the mosquito''s immune response and must rely on other methods of immune evasion. We show that the malaria parasite Plasmodium gallinaceum suppresses the encapsulation immune response of its mosquito vector, Aedes aegypti, and in particular that the parasite uses both an indirect and a direct strategy for immunosuppression. Thus, when we fed mosquitoes with the plasma of infected chickens, the efficacy of the mosquitoes to encapsulate negatively charged Sephadex beads was considerably reduced, whether the parasite was present in the blood meal or not. In addition, zygotes that were created ex vivo and added to the blood of uninfected chickens reduced the efficacy of the encapsulation response. As dead zygotes had no effect on encapsulation, this result demonstrates active suppression of the mosquito''s immune response by malaria parasites.  相似文献   

13.
Parasites can influence different host behaviours including foraging, mate choice and predator avoidance. Several recent papers have shown reduced learning abilities in infected insects. However, it is difficult to separate the effects of the immune response from the direct effects of the parasite. Using a free-flying learning paradigm, this paper shows that learning performance is impaired in bumble-bees (Bombus terrestris) that are not infected but whose immune system is stimulated non-pathogenically. This demonstrates that before it is assumed that a parasite has a direct effect on a host's behaviour, the effect of the immune response stimulated by the parasite must first be quantified.  相似文献   

14.
Galectins are increasingly recognised as important immunological mediators of homeostasis and disease regulation. This paper gives an overview of current knowledge of galectin involvement in parasite infection and allergic inflammation, two very different but immunologically linked phenomena. Galectins are produced by both the parasite and the host and appear to be intimately involved in parasite establishment, as well as directing the course of infection and the immune response. Host galectins have also been shown to be active participants in the recruitment of cells to sites of inflammation and modulating the effector function of mast cells, neutrophils and eosinophils. Moreover, the ability of galectins to induce differential expression of cytokine genes in leukocytes suggests that they are able to direct the nature of an adaptive immune response, in particular towards a T2-type allergic response.  相似文献   

15.
Simple predator-prey type models have brought much insight into the dynamics of both nonspecific and antigen-specific immune responses. However, until now most attention has been focused on examining how the dynamics of interactions between the parasite and the immune system depends on the nature of the function describing the rate of activation or proliferation of immune cells in response to the parasite. In this paper we focus on the term describing the killing of the parasite by cell-mediated immune responses. This term has previously been assumed to be a simple mass-action term dependent solely on the product of the densities of the parasite and the immune cells and does not take into account a handling time (which we define as the time of interaction between an immune cell and its target, during which the immune cell cannot interact with and/or destroy additional targets). We show how the handling time (i) can be incorporated into simple models of nonspecific and specific immunity and (ii) how it affects the dynamics of both nonspecific and antigen-specific immune responses, and in particular the ability of the immune response to control the infection.  相似文献   

16.
Trypanosoma cruzi, the causative agent of Chagas' disease, infects an estimated 12 million people in Latin America and may induce cardiopathy and megaformation of the oesophagus and colon. During the early, acute stage of the infection, parasite-induced inflammatory infiltrates may cause transitory disease which terminates with the emergence of an immune response sufficient to reduce the parasite to insignificant levels. Even so, severe disease may develop many years after the original infection. It has been suggested that this might result from an autoimmune process triggered by the parasite and mediated either (1) by the adsorption of parasite antigens to host cells, thus rendering these cells susceptible to the host's own antiparasite immune response, or (2) via cross-reactive antigens shared by the host and parasite. In common with many parasitic diseases, there is an urgent need for studies on the T-cell response to T cruzi infection, as this might not only hold the key to the immunopathology but also serve as a means of clearing this lifelong infection which survives by sequestering into an intracellular site.  相似文献   

17.
In invertebrate–parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host–parasite system with a well‐established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host–parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity.  相似文献   

18.
The evolution of parasite resistance can be influenced by the abundance of parasites in the environment. However, it is yet unresolved whether vertebrates change their investment in immune function in response to variation in parasite abundance. Here, we compare parasite abundance in four populations of small ground finches (Geospiza fuliginosa) in the Galapagos archipelago. We predicted that populations exposed to high parasite loads should invest more in immune defence, or alternatively use a different immunological defence strategy. We found that parasite prevalence and/or infection intensity increased with island size. As predicted, birds on large islands had increased concentrations of natural antibodies and mounted a strong specific antibody response faster than birds on smaller islands. By contrast, the magnitude of cell-mediated immune responses decreased with increasing parasite pressure, i.e. on larger islands. The data support the hypothesis that investments into the immune defence are influenced by parasite-mediated selection. Our results are consistent with the hypothesis that different immunological defence strategies are optimal in parasite-rich and parasite-poor environments.  相似文献   

19.
Malarial infections do not readily evoke an effective protective immunity against re-infection. Possible reasons for this include the ability of the parasites to interfere with the host's immune response and to evade the response in an immune host, by, for example, exploiting antigenic polymorphism or variation. Antigenic polymorphism undoubtedly exists in malaria parasite populations but does this polymorphism actually contribute to immune evasion by the parasite? Here, Kamini Mendis and colleagues examine the evidence for this and its implications for future malaria vaccines.  相似文献   

20.
This paper describes how a parasite with distinct stages for replication within its host and for transmission among hosts should schedule the production of the two stages so that it achieves maximal transmission. A mathematical model of the within-host dynamics of a parasite and of its interactions with the immune response predicts that the optimal pattern of investment depends largely on the relationships between the growth rate of the parasite, the rate of increase of immunity against the parasite, and parasite-induced mortality of the host. We consider first a parasite with a constant, time-independent level of investment in transmission. If such a parasite grows rapidly and can therefore reach a density that kills the host before it is cleared by the immune response, it can achieve maximal transmission by producing transmission stages, and thus reducing its effective growth rate, to the extent that its peak density is just below the lethal density. This leads to the prediction that investment in transmission should be positively correlated with growth rate. In contrast, if the parasite grows more slowly and is cleared by the immune system before it can reach lethal density, the level of investment should be negatively correlated with growth rate. If a parasite can vary its investment into transmission during the course of infection, it should delay investment into transmission until it reaches lethal density or until shortly before it is cleared by the host′s immune system. If a parasite grows slowly in comparison with immunity, the optimal pattern of investment is a bang-bang pattern: the investment switches from total production of the replication stage to total production of the transmission stage shortly before the parasite is cleared by the immune response. If a parasite grows much more rapidly than immunity, the parasite initially replicates up to lethal density without producing any transmission stages, then produces transmission stages at the rate that reduces its effective growth rate to zero and thus allows it to be maintained at lethal density, and finally switches to complete investment into transmission stages shortly before it is cleared by the immune system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号