首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble form of the neural cell adhesion molecule (N-CAM) was obtained from 100,000-g supernatants of crude brain membrane fractions by incubation for 2 h at 37 degrees C. The isolated N-CAM, consisting of one polypeptide chain with a molecular mass of 110 kilodaltons (N-CAM 110), was studied for its binding specificity to different components of the extracellular matrix (ECM). N-CAM 110 bound to different types of collagen (collagen types I-VI and IX). The binding efficiency was dependent on salt concentration and could be called specific according to the following criteria: (a) Binding showed substrate specificity (binding to collagens, but not to other ECM components, such as laminin or fibronectin). (b) Binding of N-CAM 110 to heat-denatured collagens was absent or substantially reduced. (c) Binding was saturable (Scatchard plot analyses were linear with KD values in the range of 9.3-2.0 X 10(-9) M, depending on the collagen type and buffer conditions). Binding of N-CAM 110 to collagens could be prevented in a concentration-dependent manner by the glycosaminoglycans heparin and chondroitin sulfate. N-CAM 110 also interacted with immobilized heparin, and this interaction could be prevented by heparin and chondroitin sulfate. Thus, in addition to its role in cell-cell adhesion, N-CAM is a binding partner for different ECM components, an observation suggesting that it also serves as a substrate adhesion molecule in vivo.  相似文献   

2.
The neural cell adhesion molecule (N-CAM/CD56) is a member of the Ig supergene family that has been shown to mediate homophilic binding. Several isoforms of N-CAM have been identified that are expressed preferentially in different tissues and stages of embryonic development. To examine the primary structure of N-CAM expressed in leukocytes, N-CAM cDNA were generated by polymerase chain reaction from RNA isolated from normal human NK cells and the KG1a hematopoietic leukemia cell line. The sequence of leukocyte-derived N-CAM cDNA was essentially identical with N-CAM cDNA from human neuroblastoma cells that encode the 140-kDa isoform of N-CAM. Inasmuch as N-CAM is preferentially expressed on human NK cells and a subset of T lymphocytes that mediate MHC-unrestricted cell-mediated cytotoxicity, we examined the potential role of N-CAM in cell-mediated cytotoxicity and heterotypic lymphocyte-tumor cell adhesion. N-CAM loss mutants were established from the human N-CAM+ KG1a leukemia cell line, and N-CAM cDNA was transfected into a human colon carcinoma cell line and murine L cells. Using this panel of mutants and transfectants, it was determined that expression of N-CAM on these target cells does not affect susceptibility to resting or IL-2-activated NK cell-mediated cytotoxicity. Moreover, expression of N-CAM in these transfectants failed to induce homotypic or heterotypic cellular adhesion. Collectively, these studies indicate that homophilic N-CAM interactions probably do not mediate a major role in the cytolytic interaction between NK cells and N-CAM+ tumor cell targets.  相似文献   

3.
Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.  相似文献   

4.
N-CAM at the vertebrate neuromuscular junction   总被引:27,自引:22,他引:5  
We have detected the neural cell adhesion molecule, N-CAM, at nerve-muscle contacts in the developing and adult mouse diaphragm. Whereas we found N-CAM staining with fluorescent antibodies consistently to overlap with the pattern of alpha-bungarotoxin staining at nerve-muscle contacts both during development and in the adult, we observed N-CAM staining on the surfaces of developing myofibers and at much lower levels on adult myofibers. Consistent with its function, N-CAM was also detected on axons and axon terminals. Immunoblotting experiments with anti-N-CAM antibodies on detergent extracts of embryonic (E) diaphragm muscle revealed a polydisperse polysialylated N-CAM polypeptide, which in the adult (A) was converted to a discrete form of Mr 140,000; this change, called E-to-A conversion, was previously found to occur in different neural tissues at different rates. The Mr 140,000 component was not recognized by monoclonal antibody anti-N-CAM No. 5, which specifically recognizes antigenic determinants associated with N-linked oligosaccharide determinants on N-CAM from neural tissue. The relative concentration of the Mr 140,000 component prepared from diaphragm muscle increased during fetal development and then decreased sharply to reach adult values. Nevertheless, expression of N-CAM in muscle could be induced after denervation: one week after the sciatic nerve was severed, the relative amount of N-CAM increased dramatically as detected by immunoblots of extracts of whole muscle. Immunofluorescent staining confirmed that there was an increase in N-CAM, both in the cell and at the cell surface; at the same time, however, staining at the motor endplate was diminished. Our findings indicate that, in muscle, in addition to chemical modulation, cell-surface modulation of N-CAM occurs both in amount and distribution during embryogenesis and in response to denervation.  相似文献   

5.
The neural cell adhesion molecule (N-CAM) is present in both embryonic and perinatal muscle, but its distribution changes as myoblasts form myotubes and axons establish synapses (Covault, J., and J. R. Sanes, 1986, J. Cell Biol., 102:716-730). Levels of N-CAM decline postnatally but increase when adult muscle is denervated or paralyzed (Covault, J., and J. R. Sanes, 1985, Proc. Natl. Acad. Sci. USA., 82:4544-4548). To determine the molecular forms of N-CAM and N-CAM-related RNA during these different periods we used immunoblotting and nucleic acid hybridization techniques to analyze N-CAM and its RNA in developing, cultured, adult, and denervated adult muscle. As muscles develop, the extent of sialylation of muscle N-CAM decreases, and a 140-kD desialo form of N-CAM (generated by neuraminidase treatment) is replaced by a 125-kD form. This change in the apparent molecular weight of desialo N-CAM is paralleled by a change in N-CAM RNA: early embryonic muscles express a 6.7-kb RNA species which hybridizes with N-CAM cDNA, whereas in neonatal muscle this form is largely replaced by 5.2- and 2.9-kb species. Similar transitions in the desialo form of N-CAM, but not in extent of sialylation, accompany differentiation in primary cultures of embryonic muscle and in cultures of the clonal muscle cell lines C2 and BC3H-1. Both in vivo and in vitro, a 140-kD desialo form of N-CAM and a 6.7-kb N-CAM RNA are apparently associated with myoblasts, whereas a 125-kD desialo form and 5.2- and 2.9-kb RNAs are associated with myotubes and myofibers. After denervation of adult muscle, a approximately 12-15-fold increase in the levels of N-CAM is accompanied by a approximately 30-50-fold increase in N-CAM RNA, suggesting that N-CAM expression is regulated at a pretranslational level. Forms of N-CAM and its RNA in denervated muscle are similar to those seen in perinatal myofibers.  相似文献   

6.
Alternative splicing generates a secreted form of N-CAM in muscle and brain   总被引:31,自引:0,他引:31  
A number of different membrane associated isoforms of the neural cell adhesion molecule (N-CAM) have previously been identified. Here the structure of a novel secreted isoform of N-CAM is established by analysis of a cDNA corresponding to an N-CAM mRNA from human skeletal muscle. The mRNA incorporates a novel sequence block into the extracellular domain, which introduces an in-frame stop codon and thus prematurely terminates the coding sequence, generating a truncated N-CAM polypeptide. Analysis of genomic clones indicates that the inserted sequence is present as a discrete exon within the human N-CAM gene, and Northern analysis shows it to be associated specifically with a 5.2 kb mRNA species from skeletal muscle and brain. Stable transfectants expressing the secreted isoform accumulate it in the cytoplasm and release it to the culture medium. In contrast, cells transfected with cDNA encoding lipid-tailed N-CAM express it predominantly at the cell surface. The existence of a secreted isoform may further expand the spectrum of N-CAM function beyond its known involvement in intercellular adhesion to extracellular matrix interactions.  相似文献   

7.
8.
Previous studies have reported that the cell-binding region of the neural cell adhesion molecule (N-CAM) resides in a 65,000-D amino-terminal fragment designated Frl (Cunningham, B. A., S. Hoffman, U. Rutishauser, J. J. Hemperly, and G. M. Edelman, 1983, Proc. Natl. Acad. Sci. USA, 80:3116-3120). We have reported the presence of two functional domains in N-CAM, each identified by a specific mAb, that are required for cell-cell or cell-substratum adhesion (Cole, G. J., and L. Glaser, 1986, J. Cell Biol., 102:403-412). One of these domains is a heparin (heparan sulfate)-binding domain. In the present study we have determined the topographic localization of the heparin-binding fragment from N-CAM, which has been identified by our laboratory. The B1A3 mAb recognizes a 25,000-D heparin-binding fragment derived from chicken N-CAM, and also binds to a 65,000-D fragment, presumably Frl, produced by digestion of N-CAM with Staphylococcus aureus V8 protease. Amino-terminal sequence analysis of the isolated 25,000-D heparin-binding domain of N-CAM yielded the sequence: Leu-Gln-Val-Asp-Ile-Val-Pro-Ser-Gln-Gly. This sequence is identical to the previously reported amino-terminal sequence for murine and bovine N-CAM. Thus, the 25,000-D polypeptide fragment is the amino-terminal region of the N-CAM molecule. We have also shown that the B1A3 mAb recognizes not only chicken N-CAM but also rat and mouse N-CAM, indicating that the heparin-binding domain of N-CAM is evolutionarily conserved among different N-CAM forms. Additional peptide-mapping studies indicate that the second cell-binding site of N-CAM is located in a polypeptide region at least 65,000 D from the amino-terminal region. We conclude that the adhesion domains on N-CAM identified by these antibodies are physically distinct, and that the previously identified cell-binding domain on Frl is the heparin-binding domain.  相似文献   

9.
12 distinct neural cell adhesion molecule (N-CAM) epitopes, each recognized by a different monoclonal antibody (mAb), have been characterized in terms of the major structural and functional features of the molecule. Seven antibodies, each recognizing the amino-terminal region of the molecule, altered the rate of N-CAM-mediated adhesion. Four of these were inhibitors, two of which also recognized a heparin-binding N-CAM fragment. The other three antibodies specifically enhanced the rate of N-CAM-mediated adhesion. Three epitopes, one polypeptide- and two carbohydrate-dependent, were associated with the sialic acid-rich central portion of the molecule. The remaining two antibodies were found to react with intracellular determinants, and are specific for the largest of the three major N-CAM polypeptide forms. Studies on the ability of one antibody to hinder recognition of native N-CAM by another antibody suggested that the epitopes associated with N-CAM binding functions are in close proximity compared with the other determinants. The classification of these mAb epitopes has allowed the topographical placement of key N-CAM features, as described in the following paper, and provides valuable probes for analysis of both the structure and function of N-CAM.  相似文献   

10.
11.
Neural cell adhesion molecule (N-CAM) is distributed in most nerve cells and some non-neural tissues. The present immunohistochemical study has revealed, for the first time, the expression of N-CAM in perisinusoidal stellate cells of the human liver. Liver specimens were stained with monoclonal antibody against human Leu19 (N-CAM) by a streptoavidin-biotin-peroxidase-complex method. Light- and electron-microscopic analyses have shown that N-CAM-positive nerve fibers are distributed in the periportal and intermediate zones of the liver lobule. Perisinusoidal stellate cells in these zones are also positive for N-CAM. N-CAM is expressed on the surface of the cell, including cytoplasmic projections. Close contact of N-CAM-positive nerve endings with N-CAM-positive stellate cells has been observed. On the other hand, stellate cells in the centrilobular zone exhibit weak or no reaction for N-CAM. Perivascular smooth muscle cells and fibroblasts in the portal area and myofibroblasts around the central veins are negative for N-CAM. The present results indicate that the perisinusoidal stellate cells in the periportal and intermediate zones of the liver lobule characteristically express N-CAM, unlike other related mesenchymal cells, and suggest that the intralobular heterogeneity of N-CAM expression by stellate cells is related to the different maturational stages of these cells.  相似文献   

12.
13.
14.
The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140x10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.  相似文献   

15.
16.
The developmental appearance of cell-adhesion molecules (CAMs) was mapped during the morphogenesis of the adult chicken feather. Neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), as well as substrate molecules (laminin and fibronectin), were compared in newborn chicken skin by immunohistochemical means. N-CAM was found to be enriched in the dermal papilla, which was closely apposed to L-CAM-positive papillar ectoderm. The two CAMs were then co-expressed in cells of the collar epithelium. Subsequently generated barb epithelia expressed only L-CAM, but N-CAM reappeared periodically on cells between developing barbs and barbules. N-CAM first appeared on a single L-CAM-positive basilar cell located in each valley flanked by two adjacent barb ridges. Subsequently, the expression of N-CAM extended one cell after another to include the whole basilar layer. N-CAM also appeared in the L-CAM-positive axial-plate epithelia, beginning in a single cell located at the ridge base. The two collectives of N-CAM-positive epithelia constituting the marginal and axial plates then disintegrated, leaving interdigitating spaces between keratinized structures that had previously expressed L-CAM. The morphological transformation from an epithelial cylinder to a three-level branched feather pattern is thus achieved by coupling alternating CAM expression in linked cell collectives with specific differentiation events, such as keratinization. During all of these morphogenetic processes, laminin and fibronectin formed a continuous basement membrane separating pulp from feather epithelia, and were excluded from the sites involved in periodic appearances of N-CAM. The same staining pattern described for developing chickens persisted in the feather follicles of adult chicken tissue that have gone through several cycles of molting. Cyclic expression of the two different CAMs underlies each of the different morphological events that are generated epigenetically during feather morphogenesis.  相似文献   

17.
Patterns of N-CAM expression during myogenesis in Xenopus laevis   总被引:2,自引:0,他引:2  
The neural cell adhesion molecule (N-CAM) is seen in the membrane of nerves and muscles from several vertebrate species. Using indirect immunofluorescence, we have examined the expression of this protein during embryonic and postembryonic myogenesis in the African clawed frog, Xenopus laevis. While good staining for N-CAM was seen in neuronal tissues at all stages examined, no staining of embryonic muscle was observed, including both mononucleated and polynucleated myoblasts. In contrast, limb muscles formed at metamorphosis showed strong expression of N-CAM. The developing limb muscles eventually lose their N-CAM, but will reexpress it dramatically when denervated. These observations suggest that myogenesis programs executed at different stages of development can display distinct patterns of N-CAM expression.  相似文献   

18.
19.
Human natural killer antigen-1 (HNK-1) is a carbohydrate epitope associated with sulfoglucuronylglycolipids and glycoproteins. Biochemical analyses have demonstrated associations between the HNK-1 epitope and isoforms of the neural cell adhesion molecule (N-CAM) family. In the cerebellum, HNK-1 is prominently expressed in Purkinje cell dendrites and Golgi cells. Purkinje cell expression of HNK-1 reveals an array of parasagittal stripes and transverse zones. Interestingly, the parasagittal expression pattern of HNK-1 is different from those reported with several other markers such as zebrin II/aldolase C and the small heat shock protein HSP25. N-CAM null knockout mice were used to explore the possible role of the HNK-1/N-CAM interaction during the topographical organization of the cerebellar cortex. N-CAM null mice have no N-CAM immunoreactivity but otherwise the cerebellum appears morphologically normal. Further, in the N-CAM null HNK-1 immunoreactivity is abolished from Purkinje cell dendrites but is retained on Golgi cells and neurons of the cerebellar nuclei. Despite the absence of N-CAM/HNK-1, parasagittal stripes and transverse zones in the cerebellum as revealed by using zebrin II immunocytochemistry appear normal.  相似文献   

20.
The expression of the neural cell adhesion molecules N-CAM and L1 was investigated in the olfactory system of the mouse using immunocytochemical and immunochemical techniques. In the olfactory epithelium, globose basal cells and olfactory neurons were stained by the polyclonal N-CAM antibody reacting with all three components of N-CAM (N-CAM total) in their adult and embryonic states. Dark basal cells and supporting cells were not found positive for N-CAM total. The embryonic form of N-CAM (E-N-CAM) was only observed on the majority of globose basal cells, the precursor cells of olfactory neurons, and some neuronal elements, probably immature neurons, since they were localized adjacent to the basal cell layer. Differentiated neurons in the olfactory epithelium did not express E-N-CAM. In contrast to N-CAM total, the 180-kDa component of N-CAM (N-CAM180) and E-N-CAM, L1 was not detectable on cell bodies in the olfactory epithelium. L1 and N-CAM180 were strongly expressed on axons leaving the olfactory epithelium. Olfactory axons were also labeled by antibodies to N-CAM180 and L1 in the lamina propria and the nerve fiber and glomerular layers of the olfactory bulb, but only some axons showed a positive immunoreaction for E-N-CAM. Ensheathing cells in the olfactory nerve were observed to bear some labeling for N-CAM total, L1, and N-CAM180, but not E-N-CAM. In the olfactory bulb, L1 was not present on glial cells. In contrast, N-CAM180 was detectable on some glia and N-CAM total on virtually all glia. Glia in the nerve fiber layer were labeled by E-N-CAM antibody only at the external glial limiting membrane. In the glomerular layer, E-N-CAM expression was particularly pronounced at contacts between olfactory axons and target cells. The presence of E-N-CAM in the adult olfactory epithelium and bulb was confirmed by Western blot analysis. The continued presence of E-N-CAM in adulthood on neuronal precursor cells, a subpopulation of olfactory axons, glial cells at the glia limitans, and contacts between olfactory axons and their target cells indicates the retention of embryonic features in the mammalian olfactory system, which may underlie its remarkable regenerative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号